Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Many transcriptional factors including the R2R3-MYB domain, basic helix-loop-helix (bHLH) domain and WD40 repeat proteins, which regulate flavonoid biosynthesis, have been identified in various plant species. However, there is little information on WD40 proteins in underground organs. In this study, a WD40-repeat protein gene was isolated from purple-fleshed sweet potato (Ipomoea batatas (L.) Lam. cv. Yamakawamurasaki) (IbWD40). The expression patterns of this gene were positively correlated with anthocyanin accumulation in different sweet potato cultivars. An IbWD40-GFP fusion protein was observed only in the nucleus of onion epidermal cells, which was consistent with its role as a transcriptional regulator. Stable transformation analysis revealed that IbWD40 was up-regulated in Arabidopsis thaliana seedlings, which accumulated anthocyanins, with possible additional effects on the formation of other flavonoid compounds in other tissues. These results suggest that in storage roots of purple-fleshed sweet potato the activity of IbWD40 plays a critical role in the regulation of anthocyanin biosynthesis.
Purple-fleshed sweet potato (Ipomoea batatas (L.) Lam) accumulates a large amount of anthocyanins in its tubers. Activation of anthocyanin gene expression requires transcription factors such as MYB domain, basic helix-loop-helix domain, or WD40-repeat domain-containing proteins. However, the mechanisms controlling pigmentation in underground organs remain unresolved. We used a principal component analysis to identify the most important gene in anthocyanin biosynthesis in pigmented sweet potato tubers, because this gene was the most likely to be regulated by IbMYB1. Anthocyanidin synthase was identified as the most important gene. Functional analysis of its promoter identified four MYB DNA-binding sites. In gel mobility shift experiments with recombinant IbMYB1, the IbMYB1 protein bound specifically to TAACCG box and TATCC box motifs in vitro. We conducted transient expression experiments in which various promoter fragments were used to drive expression of the LUC reporter gene. The reporter gene was strongly expressed under the control of the full-length promoter, but weakly expressed under the control of promoter fragments that lacked the MYB DNA-binding domains. This provided direct evidence that IbMYB1 activates the expression of this structural anthocyanin gene. Together, these results show that IbMYB1 is important in controlling the expression of genes in the anthocyanin biosynthetic pathway in cells.
Seeds store lipids in the form of lipid bodies (LBs) for germination and early seedling growth. LBs can be easily isolated by the established floating-extraction method from oleaginous seeds containing a large quantity of LBs. Compared to oleaginous seeds, maize and other cereal seeds contain a small quantity of LBs, so it is difficult to isolate a sufficient quantity of LBs from their embryos for 2DE-based proteomic analysis. At present, only a limited number of LBs-associated proteins in maize embryos have been identified. We here reported a modified floating-extraction method using polyvinylidene difluoride disc to collect floating LBs from maize embryo extracts. The LBs-associated proteins were resolved with two-dimensional electrophoresis and identified with mass spectrometry. As a result, several well-known LBs proteins were identified in the purified LBs fraction, such as oleosin, caleosin, and steroleosin. We also identified another two LBs proteins, corticosteroid 11-β-dehydrogenase 1 and 11-β-hydroxysteroid dehydrogenase-like 5. In particular, steroleosin, corticosteroid 11-β-dehydrogenase 1, 11-β-hydroxysteroid dehydrogenase-like, and hydroxyproline-rich glycoprotein were found as the most abundant protein components in maize LBs. The data set of maize LBs subproteome would provide insights into functional research of LBs-associated proteins during seed development and germination. Additionally, the protocol developed here is expected to be applicable for isolating LBs in other seeds or tissues containing a low quantity of LBs.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.