Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Arthropod-borne diseases still pose a serious health problem worldwide. Epidemiological consequences result from various environmental connections and interaction between parasites and their host, including host specificity of parasites and transmitted pathogens. The ixodid ticks (Ixodida) occupy a prominent position within the group of parasites as being vectors on the northern hemisphere in temperate climate zone. They are blood-feeding ectoparasites with different host specificity and capacity to transmit various pathogens. Feeding on many mammals (including humans), birds, reptiles and amphibians they present a great medical problem. For example, Ixodes ricinus can infest several hundred species of animals. It is a vector of pathogenic viral, bacterial and protozoal organisms, including Borrelia burgdorferi sensu lato complex which is the etiological agent of Lyme borreliosis. The competent reservoir hosts of Borrelia include many common species of small and medium-sized rodents as well as several bird species. Epidemiological consequences are complicated by the fact that specific Borrelia genospecies are associated with particular reservoir hosts. Thus, detailed analysis of epidemiological consequences requires a comprehensive knowledge of the biology and ecology of vectors, pathogens and their reservoirs including host specificity of ticks. Spatial modelling tick-borne risk in time and space is made possible by the use of remote sensing and techniques of geographical information system (GIS).
Climate models suggest the strong possibility of range increase of the diseases transmitted by parasitic arthropods, mostly mosquitoes. In predicting processes of malaria and Dengue diseases dispersion the estimation of risk is based mostly on reproduction rate of vector species. These models allow to calculate the critical threshold of host density which is necessary to maintain parasites and pathogens transmission. Such studies based on integrated mathematical modelling indicate widespread increase of risk due to expansion of the areas suitable for mosquito−borne diseases transmission. This predicted increase is the most pronounced at the borders of the endemic areas and at higher altitudes within malaria and Dengue areas. The simulated change in mosquito−borne diseases risk must be interpreted on the basis of local environmental conditions as well as the effects of socio−economic developments and control disease programs. Apart from mathematical models the sequencing of proteins and DNA of vectors and their pathogens as well as satellite technology (GIS) are taken into consideration. It is supposed that potential impact of global climate change on malaria and Dengue risk can be reduced by constant warning system based on biological monitoring of mosquito vector species and their pathogens. Efficient care system connected with full diagnosis, treatment and prophylaxis of transmission diseases are also required.
Ticks constitute important vectors of human and animal pathogens. Besides the Lyme borreliosis and tick-borne encephalitis, other pathogens such as Babesia spp., Rickettsia spp., and Anaplasma phagocytophilum, are of increasing public health interest. In Poland, as in other European countries, Ixodes ricinus, the most prevalent tick species responsible for the majority of tick bites in humans, is the main vector of A. phagocytophilum. The aim of the study was to estimate the infection level of I. ricinus with A. phagocytophilum in selected districts, not previously surveyed for the presence of this agent. Sampling of questing ticks was performed in 12 forested sites, located in four districts (Legnica, Milicz, Lubań, and Oława) in SW Poland. Altogether, 792 ticks (151 females, 101 males, and 540 nymphs) representing I. ricinus were checked for the presence of A. phagocytophilum. The average infection level was 4.3%, with higher rate reported for adult ticks. The highest percentage of infected adults was observed in Milicz (17.4%) and the lowest in Oława (6.8%). The abundance of questing I. ricinus in all examined sites as well as the infection with A. phagocytophilum indicate for the first time the risk for HGA transmission in SW Poland.
17
51%
The epidemiological and epizootic importance of ticks has been known for a few decades since of the discovery of their role as vectors of many new diseases, and the better detection of those already known. Given the durability of chemical preparations in the environment and the increasing problem of developing tick resistance, natural strategies for biological control are sought. A promising alternative to chemical pesticides is the use of entomopathogenic organisms for effective integrated pest management of low environmental impact. A number of promising microbes have been identified during the search for effective means of controlling the tick population, but the knowledge about the impact of these pathogens on the environment and other non-target organisms is still insufficient. Previous research has still not provided a definite answer about the safety of their use. It is known, however, that the chemicals which are currently used have a negative impact on the environment and/or cause resistance. No efficient biocompound has yet been devised for commercial use. Potential microorganisms for tick biocontrol (mainly bacteria and fungi) are natural tick pathogens, living in the same environment. With their adhesive properties, and their ability to digest the cuticle, they may constitute an appropriate ingredient of bioacaricides. Until now, fungal insecticides have been used only to control crop pests.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.