Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The paper presents proposals for the use of glass fiber reinforced polymer composites for the construction of engineering objects, known and commonly used in the shipbuilding industry. An example of a pedestrian footbridge was used in this case, which, despite the considerable thickness of the structural material, was made using infusion technology in one production cycle. The designed and produced footbridge span is durable, dynamically resistant, incombustible, easy to install and maintain, resistant to weather conditions and also aesthetically interesting. For footbridge production environmentally friendly PET foam core may be used. It may come from recycling of used plastic packages and which is produced with less energy consumption process and much less CO2 emission. The load bearing part of the structure (skin) is made of polymer laminate reinforced with glass fabrics (GFRP)
The paper analyses possible causes of failure of the rotating footbridge over the Ustka port channel. In July, 2015, strange behaviour of this object was observed in the form of excessive vibrations of bridge platform suspension rods, with the accompanying acoustic effects. A preliminary geotechnical analysis has revealed that this destructive effect was caused by the nearby construction works, namely construction of a fishing basin and communication routes in the area close to the bridge, which affected the bridge lashing rod foundation settings. Ground vibrations generated by certain construction activities were likely to have direct impact on decreasing the bearing capacity of these rods and increasing the susceptibility od the piles to extraction. After detecting the above problems in bridge operation, its geodetic monitoring was started. The data recorded during this monitoring, along with the results of force measurements in the rods, have made the basis for a series of numerical simulations, performed in the Finite Element Method (FEM) formalism. The bridge structure was analysed in the conditions defined as the emergency state. Extreme efforts of bridge elements and its dynamic characteristics were examined. A possible source of strange behaviour of the footbridge during its operation which was recognised during these simulations was the coincidence of the global natural frequency of the entire bridge structure with local vibrations of suspension rods, at the frequency approximately equal to 1 Hz. This situation was likely to lead to the appearance of the so-called internal resonance phenomenon. As a final conclusion of the research, recommendations were formulated on possible object oriented corrective actions
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.