Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Leaf carbon isotope composition (δ¹³C) of both vascular and non-vascular plants were investigated in order to assess their variability along an altitude gradient (414, 620, 850, 1086, 1286 and 1462 m) from a subtropical monsoon forest located at Mt. Tianmu Reserve, eastern China. Leaf δ¹³C values of all plant species ranged from -34.4 to -26.6‰, with an average of -29.8‰. There is no significant difference in leaf δ¹³C between vascular plants and mosses, however, trees had significantly higher δ¹³C values than herbs. For pooled data, leaf δ¹³C was positively correlated with altitude. Leaf δ¹³C was significantly and negatively correlated with annual mean temperature and atmospheric pressure, while it was significantly and positively correlated with soil water content. Furthermore, there was no relationship between leaf δ¹³C and soil nitrogen content or soil phosphorus content. The altitudinal trend in leaf δ¹³C is the consequence of the interaction between temperature, atmospheric pressure and soil water content.
Anaplasma phagocytophilum is an emerging pathogen known to cause human granulocytic anaplasmosis (HGA). Here we determined the prevalence and genetic characterization of A. phagocytophilum in Hebei Province, China. A total of 253 samples were taken from goats and sheep in Hebei Province, and 52 (20.6%) were positive for A. phagocytophilum. There was a higher positive rate in sheep (23.8%, 20/84) than in goats (18.9%, 32/169). Analysis of the partial 16S RNA gene sequences of A. phagocytophilum revealed that the isolates in this study were members of the same clade and were 100% homologous with each other. This study provides information on the epidemiologic features of A. phagocytophilum.
Older apple trees often demonstrate physiologically unreasonable shoot distribution due to root system aging, which results in lower fruit yield and poor fruit quality. Therefore this study was conducted to test whether root pruning combined with arbuscular mycorrhizal fungi could restore growth potential of fortyyear-old Red Fuji apple trees (Malus × domestica Borkh.) in a commercial orchard in 2013, by root pruning along both sides of rows, 80 cm from the trunk, to a depth of 30 cm and application of 100 ml arbuscular mycorrhizal inoculum per plant. Results showed that the percentage of root colonized by mycorrhizal fungi increased as root pruning was combined with arbuscular mycorrhizal fungi, however mycorrhizal colonization was not seen in the control roots and roots only by root pruning. For control tree total number of shoots decreased by 28.22% in 2015 than in 2013 and shoots mainly distributed in the outer canopy accounting for 58.10% of the total, which caused the lower light intensity inside the canopy, followed by lower fruit yield and poor fruit quality. Compared to control plant, shoot reduced by 33.96 and 38.51% in the outer canopy but increased by 97.99 and 123.69% in the inner canopy in 2015, as well as 390.20 and 478.43% in the vertical height of 1.5 to 2.5 m canopy, respectively treated by root pruning alone and combined with arbuscular mycorrhizal fungi. Root pruning alone and combined with arbuscular mycorrhizal fungi also raised the relative light intensity by 38.71 and 60.26% in the inner canopy in 2015, subsequent fruit yield by 315.79 and 373.68% respectively, in comparison to control plant. Shoot re-distribution improved fruit quality such as increase in firmness and soluble solid. Data indicated that the effect of root pruning combined with arbuscular mycorrhizal fungi on the rejuvenation of older apple trees was stronger than root pruning alone. It is therefore concluded that root pruning combined with arbuscular mycorrhizal fungi can think of as a measure to renew the older apple trees.
Leaf carbon isotope composition (δ¹³C) of both vascular and non-vascular plants were investigated in order to assess their variability along an altitude gradient (414, 620, 850, 1086,1286 and 1462 m) from a subtropical monsoon forest located at Mt. Tianmu Reserve, eastern China. Leaf δ¹³C values of all plant species ranged from -34.4 to -26.6‰, with an average of -29.8‰. There is no significant difference in leaf δ¹³C between vascular plants and mosses, however, trees had significantly higher δ¹³C values than herbs. For pooled data, leaf δ¹³C was positively correlated with altitude. Leaf δ¹³C was significantly and negatively correlated with annual mean temperature and atmospheric pressure, while it was significantly and positively correlated with soil water content. Furthermore, there was no relationship between leaf δ¹³C and soil nitrogen content or soil phosphorus content. The altitudinal trend in leaf δ¹³C is the consequence of the interaction between temperature, atmospheric pressure and soil water content.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.