A series of hydroponic experiments and an agar culture experiment were carried out to investigate aluminum (Al) accumulation and translocation in two rice (Oryza sativa L.) cultivars (Kasalath and Koshihikari) that differ in Al resistance. Al-resistance mechanisms, including Pi exudation under Al stress and pH shifts in the rhizosphere, were also studied. Al content in rice shoots was 41 mg kg-1 on average and did not differ between the two cultivars, which demonstrated that the rice cultivars were not Al accumulators. The majority of Al (95–97%) accumulated in roots. Al content in roots in the resistant cultivar (Koshihikari) was lower than that in the sensitive cultivar (Kasalath), which indicated that Al-exclusion mechanisms were mainly acting in rice. However, the rate of Pi exudation from the whole root or root tips was very low in both cultivars and was not significantly influenced by Al exposure, and thus seemed not to be the main Alresistance mechanism. On the other hand, experiments with pH-buffered solution and color changes following culture in agar medium containing bromocresol purple revealed that the Al-induced pH increase could not explain the high Al resistance of rice. In addition, the Al content in shoots of Koshihikari was lower after the formation of iron plaque on the root surface, whereas that of Kasalath was not lower. These results suggested that rice roots cell wall components or root surfaces such as iron plaque, rather than pH changes and/or root exudates including organic acids and phosphate, play important roles in Al resistance in rice.