Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The effect of sodium nitroprusside (SNP; nitric oxide donor) treatment on wheat plant (Triticum aestivum L.) under drought stress during grain filling stage was investigated. When two cultivars wheat plants, Yumai No. 949 and Shanmai No. 5, were drought stressed by PEG for 72 h and rewatered for 48 h, the affections of osmotic dehydration and rehydration on the antioxidant enzymes activities and psbA gene transcriptional abundance were compared. Relative water contents (RWC) decreased markedly after 72 h of PEG stress, along with an obvious decrease in chlorophyll content, increase in SOD, CAT and APX activities, and MDA content as well. Real-time quantitative polymerase chain amplification indicated that drought stress also remarkably inhibited the transcription of psbA gene in photosystem II (PSII). All of these responses could be restored by removing of stress and applying another 48 h of rewatering. The exogenous 0.2 mmol l⁻¹ SNP treatment could significantly alleviate the stress injury and accelerate the progress of recovery. Compared to Yumai No. 949, Shanmai No. 5 had less destroyed plasma membranes, higher RWC and chlorophyll contents, more psbA gene transcriptional abundance during water stress, and rapider recovery to control after rewatering, suggesting not only a better drought resistance but also a better recovery capability after a severe drought stress. The present results also suggested that the application of exogenous SNP could enhance the stress resistance of wheat plant during grain filling stage by increasing antioxidant enzymes activities, as well as protecting important gene transcription in PSII, which were to the benefit of functional recovery from drought stress.
Over the last 5 decades, runoff from the upstream area of the Yongding River basin has greatly decreased because of changes in the climate and in the intensity of human activities. The Mann-Kendall rank correlation trend test, cumulative anomaly method, and double mass curve of precipitation and runoff were applied to analyse the hydrological sequence trends and altered features in the upstream area of the Yongding River during 1960-2010. The influences of climate change and human activities on changes in runoff were quantitatively assessed using a climate elasticity method based on the Budyko hypothesis. In this paper, the results showed that, on average, runoff in the 3 basins in the upstream area of the Yongding showed a significant (99% confidence level) downward trend. We found that human activities were the main driving factors for the decline in annual runoff in the Yanghe River basin, Sanggan River basin, and upstream area of the Yongding River basin, accounting for 82.04%, 81.51%, and 75.69% of the runoff reduction, respectively, during evaluation period I, and accounting for 77.94%, 72.73%, and 73.37% of runoff reduction, respectively, during evaluation period II. However, the impact of climate variability on runoff gradually increased over time in the 3 basins.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.