Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The capacity of plants to achieve successful germination and early seedling establishment under high salinity is crucial for tolerance of plants to salt. The gaseous hormone ethylene has been implicated in modulating salt tolerance, but the detailed role of how ethylene modulates the response of early seedling establishment to salt is unclear. To better understand the role of the ethylene signal transduction pathway during germination and seedling establishment, an ethylene insensitive mutation (ein2-5) and an ethylene sensitive mutation (ctr1-1) of Arabidopsis were analyzed under saline conditions and compared with the wild type plant (Col-0) as control. High salinity (>100 mM NaCl) inhibited and delayed germination. These effects were more severe in the ethylene insensitive mutants (ein2-5) and less severe in the constitutive ethylene sensitive plants (ctr1-1) compared with Col-0 plants. Addition of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or inhibitors of ethylene action implied that ethylene was essential for early seedling establishment under normal and saline conditions. Salt stress increased the endogenous concentration of hydrogen peroxide (H₂O₂) in germinating seeds and ACC reduced its concentration. Our results suggest that ethylene promotes germination under salinity by modulating the endogenous concentration of H₂O₂ in germinating seeds. These findings demonstrate that ethylene is involved in regulating germination as an initiator of the process rather than consequence, and that ethylene promotes germination by modulating the endogenous concentration of H₂O₂ in germinating seeds under salinity.
To study intraspecific differences in N utilization in response to enhanced UV-B radiation, field experiments were conducted on two Erigeron breviscapus populations (Huguo and Cangshan), which were respectively obtained from low altitude (UV-B sensitive) and high altitude (UBV-B resistant).The effects of soil nitrogen (N) application (0, 15, 30, 45 g m2) on free amino acid content, the activities of nitrate reductase (NR) and glutamine synthetase (GS), total nitrogen content and N mass in leaves were determined under enhanced UV-B radiation (5 kJ m2) for both populations. The results showed that under enhanced UV-B radiation: (1) increases in total N contents in leaves of the Huguo and Cangshan populations correlated with the amount of N applied. Additionally, leaf biomass of Huguo treated with 15 g m−2 N application and Cangshan with 30 g m−2 N application were higher than that of other treatments. Leaf N masses were highest in both E. breviscapus populations treated with 30 g m−2 N; (2) increases in contents of free amino acids in leaves of both E. breviscapus populations correlated with the amount of applied nitrogen; (3) increases of NR activity in leaves correlated with the amount of applied nitrogen; (4) GS activity in leaves of the Huguo and Cangshan E. breviscapus populations were highest with respective N applications of 15 g m−2 N and 30 g m−2 N. In general, under enhanced UV-B radiation, N application might affect NR and GS and change free amino acid content, resulting in changes in total nitrogen content, biomass and N mass. The optimal amount of supplemental N for N accumulation in E. breviscapus was 30 g m−2 N under enhanced UV-B radiation.
Under the situ terraced field experiments, effects of artificial UV-B radiation enhancement (0, 2.5, 5.0, 7.5 kJ m⁻²) on spatial situation and surface structure of leaves and responses index of two local cultivars rice (Oryza sativa L.)—Yuelianggu and Baijiaolaojin in Yuanyang County, China in shooting stage were studied. The results showed that: (1) due to the enhanced UV-B radiation, leaf apex–base distance, leaf pedestal height, leaf rolling degree and wax content in leaves increased, while leaf apex–stem distance, distance between leaves and leaf angle decreased. The response index of growth was positive when UV-B levels were 2.5 and 5.0 kJ m⁻², which showed some adaptation. (2) The enhanced UV-B radiation resulted in smaller stomata with higher density and more papilla for both rice cultivars. (3) The enhanced UV-B radiation also leaded to larger silica cells and significantly increases the amount of papilla, spike and epidermal hair for both rice cultivars. (4) Yuelianggu cultivar showed an excellent adaptation on the aspect of spatial situation with UV-B radiation of 2.5 and 5.0 kJ m⁻², while Baijiaolaojin exhibited better adaptation respecting the surface structure of leaves when UV-B was 2.5 kJ m⁻². By changing spatial situation of leaves, structure and density of stomata, and non-stomatal structures (wax layer, silica cell, cork cell, papilla, spike and epidermal hair), two self-retention rice cultivars could adapt to the increased UV-B radiation. On the aspect of the response index, Baijiaolaojin showed better adaptation than Yuelianggu did when the UV-B was 2.5 kJ m⁻².
Accumulation of reactive oxygen species (ROS) causes oxidative stress under adverse environmental conditions, such as salinity. Ethylene decreases accumulation of ROS induced by salinity, but the mechanism is still unclear. To examine the interactions between salinity and ROS accumulation and the possible role of ethylene metabolism in regulation, we used mutant ein2-5 in Arabidopsis with loss of function in EIN2. The mutant is compared to the wild-type Col-0, completely insensitivity to ethylene at the morphological, physiological and molecular levels. The oxidative responses of the wild type and mutant to salinity were compared. Loss-of-function of EIN2 enhanced sensitivity to salinity, implying that EIN2 is required for plant response to salinity. Furthermore, salinity resulted in accumulation of large amounts of ROS in ein2-5 seedlings when compared with Col-0, suggesting that the loss-of-function of EIN2 exaggerates oxidative stress induced by salinity. Activities of the antioxidant enzymes SOD, POD and CAT decreased significantly in ein2-5 under salinity when compared with Col-0 plants. The expression profiles of the genes Fe-SOD, PODs and CAT1, which code for ROS scavenging enzymes were severely decreased in ein2-5 under salinity compared with Col-0, suggesting that EIN2 was involved in regulating expression of these genes. Taken together, our results demonstrate that loss-of-function of EIN2 increased oxidative stress induced by salinity and that EIN2 is involved in modulating ROS accumulation, at least in part, by decreasing activities of ROS-scavenging enzymes.
The Arabidopsis Ethylene-Insensitive3 (EIN3) has received attention recently and has been shown to be involved in the regulation of multitude of responses ranging from biotic stress defense and development to hormone interaction. To better understand the roles of EIN3 in plants response to salinity stress during germination and postgermination development, seeds of two EIN3 deficient mutant and a EIN3 overexpression mutant of Arabidopsis were analyzed under salinity and compared with Col-0 as control. The results showed that the ein3-1eil1-1 double mutant (lacking EIN3 and EIN3-Like1) and ein3-1 (lacking EIN3) were hypersensitive to high salinity ([150 mM NaCl), while EIN3 overexpression mutant (EIN3ox) displayed enhanced tolerance, indicating that EIN3 plays important roles during seed germination under salinity. In addition, we also found that the two EIN3 deficient mutant seedlings accumulate high levels of hydrogen peroxide (H2O2), which was thought to be an inhibitor of germination under salinity before, suggesting that EIN3 may function as a negative regulator of reactive oxygen species metabolism in germinating seeds under salinity. Taken together, our studies provide insights that EIN3 promotes seed germination under salinity, at least in part, through modulating concentration of H2O2 in germinating seeds.
Climate change has greatly affected the natural habitats of wild plants, especially vulnerable species. However, methods to properly assess priority protected areas (PPAs) that consider climate change have not been established. The distribution of Fraxinus mandshurica in northeast China was assessed, and our goal was to develop model-based strategies for the assessment of PPAs in consideration of climate change. To achieve this goal, we mapped the current and future suitable habitat distributions of F. mandshurica and planned PPAs based on 4 field surveys in northeast China. The models used in this study included a species distribution model (Maxent), systematic conservation planning model (Zonation), and geographic information system (ArcGIS 10.0). To promote sustainable development, the current and future suitable habitats of F. mandshurica must be integrated into the assessment of PPAs; however, the conservation areas of F. mandshurica in existing nature reserves cannot realize the conservation criterion of the Global Strategy for Plant Conservation (GSPC). In the eastern and northeastern regions of northeast China, the suitable habitats are predicted to migrate slightly northwards in the future. The methods used in this study are adequate for the assessment of PPAs and may provide a reference for the conservation and management of vulnerable plants.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.