Research on the optimization of hydrological model parameters is an important issue in the field of hydrological forecasts, as these parameters not only directly impact the accuracy of forecast programs, but also relate to the development, application, and popularization of hydrological models. In this paper we selected the double-excess runoff generation model as the subject for research, and the data obtained from tens of flooding events in the Fen River Basin were used for the construction of these models. The SCE-UA and MOSCDE algorithms were then taken to optimize the models’ parameters. The results showed that: as compared with the SCE-UA algorithm, higher flood forecast accuracies were obtained through model parameter optimization using the MOSCDE algorithm. During the examination period, the compliance rate of the flood peak magnitude increased from 60% to 70%, while the compliance rate of the flood peak duration increased from 80% to 90%. The Nash-Sutcliffe efficiency (NSE) of the flood peak magnitudes increased from 0.664 to 0.878, which demonstrates an improvement in goodness-of-fit; the RMSE value of flood peak magnitudes also decreased from 399.8 to 236.84, thus showing a decrease in dispersion and an improvement in goodness-of-fit. With the continuous improvements made in hydrological parameter algorithms and the creation of new optimization algorithms, there is no doubt that the optimization of hydrological model parameters will become more reasonable.
Background: Imbalances in circulating T lymphocytes play critical roles in the pathogenesis of hypertension-mediated inflammation. Connexins (Cxs) in immune cells are involved in the maintenance of homeostasis of T lymphocytes. However, the association between Cxs in peripheral blood T lymphocytes and hypertensionmediated inflammation remains unknown. This study was designed to investigate the role of Cxs in T lymphocytes in hypertension-mediated inflammation in spontaneously hypertensive rats (SHRs). Methods: The systolic blood pressure (SBP) in Wistar-Kyoto (WKY) rats and SHRs was monitored using the tail-cuff method. The serum cytokine level was determined using ELISA. The proportions of different T-lymphocyte subtypes in the peripheral blood, the expressions of Cx40/Cx43 in the T-cell subtypes, and the gap junctional intracellular communication (GJIC) of peripheral blood lymphocytes were measured using flow cytometry (FC). The accumulations of Cx40/Cx43 at the plasma membrane and/or in the cytoplasm were determined using immunofluorescence staining. The in vitro mRNA levels of cytokines and GJIC in the peripheral blood lymphocytes were respectively examined using real-time PCR and FC after treatment with Gap27 and/or concanavalin A (Con A). Results: The percentage of CD4+ T cells and the CD4+ /CD8+ ratio were high, and the accumulation or expressions of Cx40/Cx43 in the peripheral blood lymphocytes in SHRs were higher than in those of WKY rats. The percentage of CD8+ and CD4+ CD25+ T cells was lower in SHRs. The serum levels of IL-2, IL-4 and IL-6 from SHRs were higher than those from WKY rats, and the serum levels of IL-2 and IL-6 positively correlated with the expression of Cx40/Cx43 in the peripheral blood T lymphocytes from SHRs. The peripheral blood lymphocytes of SHRs exhibited enhanced GJIC. Cx43-based channel inhibition, which was mediated by Gap27, remarkably reduced GJIC in lymphocytes, and suppressed IL-2 and IL-6 mRNA expressions in Con A stimulated peripheral blood lymphocytes.
Microtoid cricetids are widely considered to be the ancestral form of arvicoline rodents, a successful rodent group includ− ing voles, lemmings and muskrats. The oldest previously known microtoid cricetid is Microtocricetus molassicus from the Late Miocene (MN9, ca. 10–11 Ma) of Europe. Here, we report a new microtoid cricetid, Primoprismus fejfari gen. et sp. nov., from the Junggar Basin of Xinjiang, northwestern China. The rodent assemblage found in association with this specimen indicates a late Early Miocene age, roughly estimated at 18–17 Ma, and thus more than 6 million years older than M. molassicus. While morphological comparisons suggest that the new taxon is most closely related to M. molas− sicus, it differs from the latter in a striking combination of primitive characters, including a lower crown, smaller size, a differentiated posterolophid and hypolophid, a faint anterolophid, the absence of an ectolophid, and the presence of a stylid on the labial border of the tooth. Arid conditions prevailing across the mid−latitude interior of Eurasia during the Early Miocene, enhanced by the combined effects of the Tibetan uplift and the gradual retreat of the Tethys Ocean, likely played a role in the appearance of grasslands, which in turn triggered the evolution of microtoid cricetids and, ultimately, the origin of arvicoline rodents.