Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 21

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In narrow water channels, ship traffic may be affected by water flows and ship interactions. Studying their effects can help maritime authorities to establish appropriate management strategies. In this study, a two-lane cellular automation model is proposed. Further, the behavior of ship traffic is analyzed by setting different water flow velocities and considering ship interactions. Numerical experiment results show that the ship traffic density-flux relation is significantly different from the results obtained by classical models. Furthermore, due to ship interactions, the ship lane-change rate is influenced by the water flow to a certain degree
The ability of purified multi-walled carbon nanotubes (MWCNTs) to adsorb diclofenac and triclosan in aqueous solutions was examined by equilibrium, kinetic, and thermodynamic parameters. The results of SEM image, BET specific surface area, XRD, TGA, and FTIR spectra indicated that the characteristics of MWCNTs were improved after purification with nitric acid. Batch experiments illustrated that the removal efficiency of diclofenac and triclosan depended mostly on the MWCNTs dosage, temperature, ion concentration, pH, and initial concentration. The maximum adsorption capacity for diclofenac and triclosan under optimum conditions was 19.9 mg g⁻¹ and 19.7 mg g⁻¹, respectively. The equilibrium data showed that adsorption behavior of diclofenac and triclosan could be described more reasonably by the pseudosecond-order model. Thermodynamic simulation showed that the adsorption was fitted with Langmuir and Freundlich adsorption isotherm, and the thermodynamic parameters revealed the process to be exothermic and spontaneous. In addition, the adsorption behavior of MWCNTs in the binary solution was successfully predicted using the ideal adsorbed solution theory. Finally, the adsorption mechanism was discussed.
A newly discovered silicified brachiopod interval from the Upper Member of the Guanling Formation (Late Anisian, Middle Triassic) in Guizhou Province (South China) is described for the first time. The most remarkable feature of this brachiopod assemblage, besides the very good preservation, is the very low taxonomic evenness and diversity. This impoverished, low diversity/high density assemblage is represented by more than 700 recovered specimens belonging to three species within two spiriferinid genera (Pseudospiriferina multicostata, P. pinguis, and Punctospirella fragilis). It is characterized by the overwhelming abundance of an endemic spiriferinid species, P. multicostata, which contributes to more than 90% of the community. Silicified valves of P. multicostata and Punctospirella fragilis allow detailed descriptions of the internal morphology based on direct observation. Brachiopod paleoecology, assessed by considering host−rock lithology, shell disarticulation, and shell size suggests that this endemic brachiopod fauna represents a favourable niche for development of dense brachiopod−dominated communities, i.e., high energy, hard substrate, nutrient rich environment.
Though mulberry (Morus alba) tree shows great adaptations to various climate conditions, their leaf water status and photosynthesis are sensitive to climate changes. In the current study, seven widely planted mulberry cultivars in Chongqing, Southwest China, were selected to analyze leaf cuticular wax characteristics, gas exchange index, post-harvest leaf water status and their relationships, aiming to provide new theory in screening high resistant mulberry cultivars. Mulberry trees formed rounded cap-type idioblasts on the adaxial leaf surface. Film-like waxes and granule-type wax crystals covered leaf surfaces, varying in crystal density among cultivars. The stomatal aperture on the abaxial surface of cultivars with high wax amount was smaller than that of cultivars with low wax amount. The amount of total wax was negatively correlated with the net photosynthetic rate (PN), transpiration rate (E) and stomatal conductance (gs) and positively correlated with the moisture retention capacity. It suggested that both cuticular wax and stomatal factor might be involved in regulating water loss in mulberry leaves under field conditions. The variability in moisture retention capacity and cuticular wax characteristics might be important in evaluating and screening mulberry cultivars for increasing silk quality and silkworm productivity.
Nanoscale zero-valent iron (NZVI) as an effective material has been applied to reduce nitrate. Yet NZVI has defects of aggregation and oxidation. To overcome these disadvantages, nanoscale bimetallic iron/copper particles were introduced to reduce nitrate in this work. In this paper, nanoscale bimetallic Fe/Cu particles were prepared by the liquid phase chemical reduction method; the particles were characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effect of prepared particles was evaluated by reducing synthetic nitrate wastewater, and batch experiments were conducted to investigate the effect of initial nitrate concentration and various Cu loading on nitrate reduction by nanoscale bimetallic Fe/Cu particles. The results indicated that nitrate could be completely removed in 20 min reaction by nanoscale bimetallic Fe/Cu particles when Cu loading was 5% and initial nitrate concentration was 80 mg/L. As a result, the nitrate in wastewater was converted into ammonium and nitrogen gas, with nitrite as an intermediate by-product.
Although some genes involved in heavy metal detoxification and tolerance have been identified in plants, the mechanisms underlying heavy metal resistance remain to be elucidated further. To investigate its molecular mechanisms, a forward genetic screen was performed for identifying Arabidopsis (Arabidopsis thaliana) cadmium (Cd)-sensitive mutants. Here we report a novel cms1-1 (cadmium-sensitive) mutant, which defines a genetic locus involved in the regulation of cadmium and lead (Pb) resistance in Arabidopsis. cms1-1 plants were hypersensitive to Cd but resistant to Pb as well as oxidative stress mediated by hydrogen peroxide and methyl viologen. Genetic analysis indicated that cms1-1 is a recessive mutation in a single nuclear gene. When subjected to Cd or Pb stress, higher Cd or lower Pb content was detected in cms1-1 plants than in wild-type plants, respectively. The cms1-1 mutation altered the expression pattern of some Cd/ Pb stress-related genes, including AtPDR8 and AtPDR12, which was associated with changes of Cd and Pb contents. In addition, Cd hypersensitivity/enhanced Pb resistance mediated by cms1-1 is glutathione (GSH)- independent. The results suggest that CMS1 plays distinct roles in the regulation of Cd and Pb resistance mainly through a GSHindependent AtPDR12/AtPDR8-mediated mechanism.
Pelage color variants have been documented in some small mammals, but there is not any reported about coat color variation in shrews. Here, pelage color variants of the two sibling species (Sorex cylindricauda and Sorex bedfordiae) were uncovered in different sampling sites. Our data may initiate new interest to pelage color variants in small mammals. Furthermore, the classification of two striped shrews has been controversial for several decades. We conducted a detailed examination of the morphometric characters for the two sibling shrews. Significant differences between the two species morphologically confirmed the two-species classification status.
MAX4 gene has been shown to be involved in the regulation of shoot branching in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of MAX4 gene in low inorganic phosphate (Pi) stress response in Arabidopsis. Here we showed that MAX4 gene is involved in the regulation of low Pi stress response in Arabidopsis. MAX4 gene was repressed by low Pi stress, and the max4 mutants showed lower anthocyanin content and longer primary root length. In addition, max4 mutant plants also displayed altered root architecture such as increased root-to-shoot ratio, lower lateral root number and root hair density compared with wild-type plants under low Pi stress. Higher total Pi contents were detected in shoots and roots of max4 plants than those of wild-type plants when subjected to low Pi stress, which was associated, at least in part, with increase in expression of WRKY75 as well as AtPT1 and AtPT2 genes encoding high-affinity Pi transporters. Taken together, all these results suggest that MAX4 gene mediates low Pi stress response, at least in part, by regulating the expression of WRKY75 as well as AtPT1 and AtPT2 genes.
Dihydroxyacetone synthase (DAS) and dihydroxyacetone kinase (DAK) are two key enzymes for formaldehyde assimilation in methylotrophic yeasts. In order to using a Gateway LR recombination reaction to construct a plant expression vector that contains the expression cassettes for the das and dak genes and allow the proteins encoded by the two target genes to be localized to the chloroplasts of transgenic plants, the entry vector pEN-L4*-PrbcS-*T-gfp-L3* contained the tomato rbcS 3C promoter (PrbcS) with its transit peptide sequence (*T) and a GFP reporter gene (gfp) was constructed in this study. To verify the applicability of pEN-L4*-PrbcS-*T-gfp-L3*, we generated an entry vector for the dak gene by replacing the gfp gene in this entry vector with the dak gene. We also generated an entry vector for the das gene by replacing the gus gene in another entry vector (pENTR*-PrbcS-*T-gus) with the das gene. Using these entry vectors and pK7m34GW2-8m21GW3, we successfully constructed the pKm-35S-PrbcS-*T-gfp-PROLD-PrbcS-*T-gus and the pKm-35S-PrbcS-*T-dak-PROLD-PrbcS-*T-das expression vectors. Our results showed that high expression of GUS was achieved in leaves, and the expressed GFP, DAS and DAK proteins could be targeted to the chloroplasts after the two expression vectors were used to transform tobacco. The overexpressions of DAS and DAK in the chloroplasts successfully created a novel photosynthetic HCHO-assimilation pathway in transgenic tobacco. By utilizing these expression vectors, we not only successfully expressed two target genes with one transformation but also localized the expressed proteins to chloroplasts via the transit peptide sequence (*T). Therefore, the construction of pEN-L4*-PrbcS-*T-gfp-L3* establishes a technique platform that provides a convenient means for chloroplast genetic engineering.
As sessile organisms, plants usually experience several stresses simultaneously. It was shown that stress cross-tolerance may be induced by different stressors, including biotic factors as well as heavy metal, hypoxia, ultraviolet-B radiation, heat, high salt, drought, and cold stresses. However, it is unclear whether there is a cross-tolerance toward cold and lead (Pb) stresses in Arabidopsis. In this study, we showed that cold pretreatment enhanced Pb(II) resistance in Arabidopsis, as indicated by lower reduction of root length, fresh weight, and chlorophyll content in the cold-treated plants than the control ones. In the cold-treated seedlings, lower Pb contents were detected in roots and shoots in comparison to the control. This was associated, at least in part, with the activation of the expression of AtPDR12 gene, a pump excluding Pb(II) and/ or Pb(II)-containing toxic compounds from the cytoplasm to the exterior of the cell. This finding was further supported by genetic evidence showing that cold treatment was unable to enhance resistance of atpdr12 mutant to Pb(II) stress but could enhance Pb(II) resistance of the wild type. In addition, we also found that cold-induced enhanced Pb(II) resistance was glutathione-independent. Taken together, all these results suggest that cold treatment enhanced Pb(II) resistance in Arabidopsis, at least in part, by activating the expression of AtPDR12 gene.
Seasonal composition and quality of diets of red deer Cervus elaphus Linnaeus, 1758 were investigated, basing on microhistolagical analysis of composite fecal samples in the Less Xingan Mountains, northeastern China. Red deer consumed more graminoids (46%) in spring, shifted to forbs (45%) in summer, and returned to graminoids (35%) in autumn. Availability and high quality [high level of crude protein (CP), and low level of neutral detergent fiber (NDF) and acid detergent fiber (ADF) in farbs in summer] appeared to be two key factors causing these changes in diets. Winter diets were dominated by browses (74%) and the horsetails Equisetum hiernale (21%). Three forbs (Oxalix corniculata, Caltha palustris, Agrimonia pilosa) were prevalent in diets during snow-free seasons, and aspen (Populus spp.) was an important browse species in all seasons, especially in winter (32%). Forage and diet quality changed seasonally. Dietary CP and in vitro dry matter digestibility (IVDMD) declined significantly from spring to winter (from 19.6 to 6.4% and from 61.1 to 32.9%, respectively). In contrast, dietary NDF and ADF increased from 55.6 to 69.9% and from 27.9 to 54.3%, respectively. Red deer diets showed different patterns of seasonal variation in mineral contents. In most cases, dietary Ca, P and K were adequate, but Na appeared deficient all the year round. It is concluded that red deer in this region are typical mixed feeders and their diet shows seasonal changes in quality, similar to those of North American wapiti. Although red deer may have enough protein in most seasons, energy might be a key limiting factor in severe winters.
The objective of this study was to investigate the effects of dietary starch sources on the net portal-drained viscera (PDV) flux of metabolites in goats fed diets based on maize and wheat, respectively. Eight 8-month-old Liuyang Black wether goats, with catheters surgically in the mesenteric vein, the portal vein and the carotid artery, were assigned to one of two diets for determination of net nutrient flux across the PDV. There were no differences (P>0.05) in plasma concentrations of glucose and ammonia-nitrogen (N) in the portal vein and carotid artery, and net PDV flux of glucose and urea-N between maize diet and wheat diet. The portal plasma urea-N concentration and net PDV flux of ammonia-N of goats fed maize diet were lower (P<0.05) than those of goats fed wheat diet. Plasma concentrations in the portal vein and carotid artery and net PDV flux of certain essential amino acids of goats fed maize diet were higher (P<0.05) than those of goats fed wheat diet. The results of this study suggested that dietary starch source could affect N absorption and utilization in goats.
Keichousaurus hui is a small pachypleurosaur (Reptilia: Sauropterygia) from the Triassic of China. Many specimens of various growth stages are known, making them ideal for ontogenetic research. We report 22 new specimens from the Middle Triassic of Xingyi (Guizhou, south China), and combined their skeletal measurements with those from 85 published specimens to analyze the ontogenetic trajectory of sexual dimorphism. An Exploratory Factor Analysis suggests that the largest factors behind morphological disparity within the species are body size followed by gender. Sexual dimorphism is most clearly reflected in selected skeletal ratios that are more pronounced in males than in females. We found that the relative length of femur to body size was useful in gender identification, in addition to three ratios that are traditionally used, namely a distal expansion of the humerus relative to its shaft, humerus length relative to body size, and humerus length relative to femur length. Two distinctive patterns exist in allometric changes of these four ratios. The distal expansion of the humerus is exceptional in that it is equally pronounced in juvenile and adult males and therefore must have been fully established during embryonic growth. The other three features are not pronounced at birth size and subsequently become pronounced during postembryonic growth. However, males and females already show different growth trajectories at birth size even in these three. Therefore, the fate of sexually dimorphic features seems to have already been set during embryonic growth in K. hui.
Soil salinity is a serious problem worldwide. It is necessary to improve the salt tolerance of plants to avoid the progressive deterioration of saline soil. We showed that the over-expression of AtNHX1 improves salt tolerance in a transgenic poplar (Populus deltoides CL × P. euramericana CL ‘‘NL895’’) under mannose selection. Four transgenic poplar plants were obtained. Southern blot analysis showed that the pmi gene had integrated into the genome of the poplar. RT-PCR confirmed that AtNHX1 could be expressed normally in the transgenic plants. When tested for salt tolerance by NaCl stress, we measured a 100% increase in Na⁺ content in the three transgenic lines (T18, T50, T98) significantly higher than the 33% increase seen in wild-type plants. The chlorophyll content of the transgenic plants was not altered significantly, while the chlorophyll content in the control plants showed a small decrease. MDA content was decreased in the transgenic plants. These results show that the AtNHX1 gene may enhance salt tolerance due to increased vacuolar compartmentalization of sodium ions.
Formaldehyde (HCHO) is highly toxic to all living organisms. In this study, the toxic effects of HCHO exposure on Arabidopsis thaliana were analyzed at the physiological and transcriptional levels. Exposure to 2 mM HCHO led to a significant decrease in plant growth and a massive increase in anthocyanin content. A remarkable increase in H₂O₂ content and elevation in the levels of protein carbonyl and DNA–protein crosslinks were detected in Arabidopsis plants exposed to 2 mM HCHO for a period of 17 h. In contrast, the malondialdehyde content decreased during this period. These results suggested that HCHO stress caused significant oxidative damage to proteins but not membrane lipids during this period. The Affymetrix ATH1 Genome Array was used to evaluate changes in the global gene expression in Arabidopsis plants exposed to 2 mM HCHO over the 17-h period. A total of 620 transcripts were shown to be regulated significantly (at least twofold). The number of down-regulated genes (467) was approximately threefold greater than the number of up-regulated genes (154). Down-regulation in a large number of genes encoding cell surface receptors, cell wall proteins, enzymes related to toxin metabolism, peroxidase, disease resistance protein, multidrug and toxin extrusion and ATP-binding cassette transporters might be an important part of the toxic effects of HCHO exposure on Arabidopsis at the transcriptional level. Up-regulation in many genes encoding heat shock proteins was suggested to be an important protective mechanism for Arabidopsis plants in response to the oxidative damage of proteins. Verification of microarray data by reverse transcription polymerase chain reaction analysis identified typical HCHO-induced and -repressed genes.
The Arabidopsis Ethylene-Insensitive 2 (EIN2) gene was shown to be involved in the regulation of abiotic and biotic stresses, such as ozone stress, high salt, oxidative stress, lead and disease resistances. However, it is unclear whether EIN2 plays a role in mediating the ultraviolet (UV)-B response in Arabidopsis. Here, we show that EIN2 is involved in the regulation of the UV-B response. The EIN2 expression was repressed by UV-B exposure, and ein2-1 mutant plants were more tolerant to UV-B than wild-type plants, as indicated by analysis of survival rates. Significant higher increases in flavonoids and anthocyanins were detected in ein2-1 plants than in wild-type plants treated with or without UV-B treatment, which was associated, at least in part, with constitutively increased transcript levels of two key genes CHALCONE SYNTHASE (CHS) and CINNAMATE 4-HYDROXYLASE (C4H) involved in the biosynthesis pathway of flavonoid and anthocyanins. These results suggest that EIN2 mediates the UV-B response, at least in part, via the modulation of expression of CHS and C4H genes.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.