Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The inherent optical properties (IOPs) of suspended particulate matter and their relations with the main biogeochemical characteristics of particles have been examined in the surface waters of the southern Baltic Sea. The empirical data were gathered at over 300 stations in open Baltic Sea waters as well as in the coastal waters of the Gulf of Gdańsk. The measurements included IOPs such as the absorption coefficient of particles, absorption coefficient of phytoplankton, scattering and backscattering coefficients of particles, as well as biogeochemical characteristics of suspended matter such as concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and chlorophyll a (Chl a). Our data documented the very extensive variability in the study area of particle concentration measures and IOPs (up to two orders of magnitude). Although most of the particle populations encoun- tered were composed primarily of organic matter (av. POM/SPM=ca 0.8), the different particle concentration ratios suggest that the particle composition varied significantly. The relations between the optical properties and biogeochemical parameters of suspended matter were examined. We found significant variability in the constituent-specific IOPs (coefficients of variation (CVs) of at least 30% to 40%, usually more than 50%). Simple best-fit relations between any given IOP versus any constituent concentration parameter also highlighted the significant statistical errors involved. As a result, we conclude that for southern Baltic samples an easy yet precise quantification of particle IOPs in terms of the concentration of only one of the following parameters – SPM, POM, POC or Chl a – is not achievable. Nevertheless, we present a set of best statistical formulas for a rough estimate of certain seawater constituent concentrations based on relatively easily measurable values of seawater IOPs. These equations can be implemented in practice, but their application will inevitably entail effective statistical errors of estimation of the order of 50% or more.
This article is the first in a series of three describing the modelling of the vertical different photosynthetic and photoprotecting phytoplankton pigments concentration distributions in the Baltic and their interrelations described by the so-called non-photosynthetic pigment factor. The model formulas yielded by this research are an integral part of the algorithms used in the remote sensing of the Baltic ecosystem. Algorithms of this kind have already been developed by our team from data relating mainly to oceanic Case 1 waters (WC1) and have produced good results for these waters. But their application to Baltic waters, i.e., Case 2 waters, was not so successful. On the basis of empirical data for the Baltic Sea, we therefore derived new mathematical expressions for the spatial distribution of Baltic phytoplankton pigments. They are discussed in this series of articles. This first article presents a statistical model for determining the total concentration of chlorophyll a (i.e., the sum of chlorophylls a+pheo derived spectrophotometrically) at different depths in the Baltic Sea Ca(z) on the basis of its surface concentration Ca(0), which can be determined by remote sensing. This model accounts for the principal features of the vertical distributions of chlorophyll concentrations characteristic of the Baltic Sea. The model’s precision was verified empirically: it was found suitable for application in the efficient monitoring of the Baltic Sea. The modified mathematical descriptions of the concentrations of accessory pigments (photosynthetic and photoprotecting) in Baltic phytoplankton and selected relationships between them are given in the other two articles in this series (Majchrowski et al. 2007, Woźniak et al. 2007b, both in this volume).
This is the second in a series of articles, the aim of which is to derive mathematical expressions describing the vertical distributions of the concentrations of different groups of phytoplankton pigments; these expressions are necessary in the algorithms for the remote sensing of the marine ecosystem. It presents formulas for the vertical profiles of the following groups of accessory phytoplankton pigments: chlorophylls b, chlorophylls c, phycobilins, photosynthetic carotenoids and photoprotecting carotenoids, all for the uppermost layer of water in the Baltic Sea with an optical depth of τ ≈ 5. The mathematical expressions for the first four of these five groups of pigments, classified as photosynthetic pigments, enable their concentrations to be estimated at different optical depths in the sea from known surface concentrations of chlorophyll a. The precision of these estimates is characterised by the following relative statistical errors according to logarithmic statistics σ−: approximately 44% for chlorophyll b, approx. 39% for chlorophyll c, approx. 43% for phycobilins and approx. 45% for photosynthetic carotenoids. On the other hand, the mathematical expressions describing the vertical distributions of photoprotecting carotenoid concentrations enable these to be estimated at different depths in the sea also from known surface concentrations of chlorophyll a, but additionally from known values of the irradiance in the PAR spectral range at the sea surface, with a statistical error σ− of approximately 42%
Analysed by differential spectroscopy, 1208 empirical spectra of light absorption apl(λ) by Baltic phytoplankton were spectrally decomposed into 26 elementary Gaussian component bands. At the same time the composition and concentrations of each of the 5 main groups of pigments (chlorophylls a, chlorophylls b, chlorophylls c, photosynthetic carotenoids and photoprotecting carotenoids) were analysed in 782 samples by HPLC. Inspection of the correlations between the intensities of the 26 elementary absorption bands and the concentrations of the pigment groups resulted in given elementary bands being attributed to particular pigment groups and the spectra of the mass-specific absorption coefficients established for these pigment groups. Moreover, balancing the absorption effects due to these 5 pigment groups against the overall absorption spectra of phytoplankton suggested the presence of a sixth group of pigments, as yet unidentified (UP), undetected by HPLC. Apr eliminary mathematical description of the spectral absorption properties of these UP was established. Like some forms of phycobilins, these pigments are strong absorbers in the 450–650 nm spectral region. The packaging effect of pigments in Baltic phytoplankton was analysed statistically, then correlated with the concentration of chlorophyll a in Baltic water. As a result, a Baltic version of the algorithm of light absorption by phytoplankton could be developed. This algorithm can be applied to estimate overall phytoplankton absorption spectra and their components due to the various groups of pigments from a knowledge of their concentrations in Baltic water.
This paper is the second part of the description of the first stage of the SatBałtyk project’s implementation. Part 1 (Woźniak et al. 2011, in this issue) presents the assumptions and objectives of SatBałtyk and describes the most important stages in the history of our research, which is the foundation of this project. It also discusses the operation and general structure of the SatBałtyk system. Part 2 addresses various aspects of the practical applicability of the SatBałtyk Operational System to Baltic ecosystem monitoring. Examples are given of the Baltic’s characteristics estimated using the preliminary versions of the algorithms in this Operational System. At the current stage of research, these algorithms apply mainly to the characteristics of the solar energy influx and the distribution of this energy among the various processes taking place in the atmosphere-sea system, and also to the radiation balance of the sea surface, the irradiance conditions for photosynthesis and the condition of plant communities in the water, sea surface temperature distributions and some other marine phenomena correlated with this temperature. Monitoring results obtained with these preliminary algorithms are exemplified in the form of distribution maps of selected abiotic parameters of the Baltic, as well as structural and functional characteristics of this ecosystem governed by these parameters in the Baltic’s many basins. The maps cover practically the whole area of the Baltic Sea. Also given are results of preliminary inspections of the accuracy of the magnitudes shown on the maps. In actual fact, the errors of these estimates are relatively small. The further practical application of this set of algorithms (to be gradually made more specific) is therefore entirely justified as the basis of the SatBałtyk system for the effective operational monitoring of the state and functioning of Baltic ecosystems. This article also outlines the plans for extending SatBałtyk to include the recording of the effects and hazards caused by current and expected storm events in the Polish coastal zone.
This article is the first of two papers on the remote sensing methods of monitoring the Baltic ecosystem, developed by a Polish team. The main aim of the five- year SatBałtyk (2010–2014) research project (Satellite Monitoring of the Baltic Sea Environment) is to prepare the technical infrastructure and set in motion operational procedures for the satellite monitoring of the Baltic environment. This system is to characterize on a routine basis the structural and functional properties of this sea on the basis of data supplied by the relevant satellites. The characterization and large-scale dissemination of the following properties of the Baltic is anticipated: the solar radiation influx to the sea’s waters in various spectral intervals, energy balances of the short- and long-wave radiation at the Baltic Sea surface and in the upper layers of the atmosphere over the Baltic, sea surface temperature distribution, dynamic states of the water surface, concentrations of chlorophyll a and other phytoplankton pigments in the Baltic water, distributions of algal blooms, the occurrence of upwelling events, and the characteristics of primary organic matter production and photosynthetically released oxygen in the water. It is also intended to develop and, where feasible, to implement satellite techniques for detecting slicks of petroleum derivatives and other compounds, evaluating the state of the sea’s ice cover, and forecasting the hazards from current and future storms and providing evidence of their effects in the Baltic coastal zone. The ultimate objective of the project is to implement an operational system for the routine determination and dissemination on the Internet of the above-mentioned features of the Baltic in the form of distribution maps as well as plots, tables and descriptions characterizing the state of the various elements of the Baltic environment. The main sources of input data for this system will be the results of systematic recording by environmental satellites and also special-purpose ones such as TIROS N/NOAA, MSG (currently Meteosat 9), EOS/AQUA and ENVISAT. The final effects of the SatBałtyk project are to be achieved by the end of 2014, i.e. during a period of 60 months. These two papers present the results obtained during the first 15 months of the project. Part 1 of this series of articles contains the assumptions, objectives and a description of the most important stages in the history of our research, which constitute the foundation of the current project. It also discusses the way in which SatBałtyk functions and the scheme of its overall operations system. The second article (Part 2), will discuss some aspects of its practical applicability in the satellite monitoring of the Baltic ecosystem (see Woźniak et al. (2011) in this issue).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.