Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Characteristics of 64 possible tandem trinucleotide repeats (TSSR) from Homo sapiens (hs), Mus musculus (mm) and Rattus norvegicus (rn) genomes are presented. Comparative analysis of TSSR frequency depending on their repetitiveness and similarity of the TSSR length distributions is shown. Comparative analysis of TSSR sequence motifs and association between type of motif and its length (n) using ρ-coefficient method (quantitatively measuring the association between variables in contingency tables) is presented. These analyses were carried out in the context of neurodegenerative diseases based on trinucleotide tandems. The length of these tandems and their relation to other TSSR is estimated. It was found that the higher repetitiveness (n) the lower frequency of trinucleotides tandems. Differences between genomes under consideration, especially in longer than n=9 TSSR were discussed. A significantly higher frequency off A- and T-rich tandems is observed in the human genome (as well as in human mRNA). This observation also applies to mm and rn, although lower abundant in proportion to human genomes was found. The origin of elongation (or shortening) of TSSR seems to be neither frequency nor length dependent. The results of TSSR analysis presented in this work suggest that neurodegenerative disease-related microsatellites do not differ versus the other except the lower frequency versus the other TSSR. CAG occurs with relatively high frequency in human mRNA, although there are other TSSR with higher frequency that do not cause comparable disease disorders. It suggests that the mechanism of TSSR instability is not the only origin of neurodegenerative diseases.
Congo red and a group of structurally related dyes long used to stain amyloid proteins are known to associate in water solutions. The self-association of some dyes belonging to this group appears particularly strong. In water solutions their molecules are arranged in ribbon-like micellar forms with liquid crystalline properties. These compounds have recently been found to form complexeswith some native proteins in a non-standard way. Gaps formed by the local distribution of β-sheets in proteins probably represent the receptor sites for these dye ligands. They may result from higher structural instability in unfolding conditions, but also may appear as long range cooperative fluctuations generated by ligand binding. Immunoglobulins G were chosen as model binding proteins to check the mechanism of binding of these dyes. The sites of structural changes generated by antigen binding in antibodies, believed to act as a signal propagated to distant parts of the molecule, were assumed to be suitable sites for the complexation of liquid-crystalline dyes. This assumption was confirmed by proving that antibodies engaged in immune complexation really do bind these dyes; as expected, this binding affects their function by significantly enhancing antigen binding and simultaneously inhibiting C1q attachment. Binding of these supramolecular dyes by some other native proteins including serpins and their natural complexes was also shown. The strict dependence of the ligation properties on strong self-assembling and the particular arrangement of dye molecules indicate that supramolecularity is the feature that creates non-standard protein ligands, with potential uses in medicine and experimental science.
The postulated intramolecular signaling in immunoglobulins generated by antigen binding has been controversial for years. The high heterogeneity of immune complexes as signaling systems and the requirement of the immobilized antigen form for efficient triggering of effector activity is likely the reason for the lack of clarity. Here we present new evidence supporting the notion of intramolecular signaling, based on the use of supramolecular dyes that bind to signal-derived specific sites in immunoglobulins.
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for /3-struc- ture. Complexation with proteins was measured directly and expressed as the num­ber of dye molecules bound to heat-aggregated IgG and to two light chains with dif­ferent structural stability. Binding of dyes to rabbit antibodies was measured indi­rectly as the enhancement effect of the dye on immune complex formation. Self-as­sembling was tested using dynamic light scattering to measure the size of the supra- molecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of /3-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supra- molecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unsta­ble supramolecular entities are less able to bind.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.