Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are implicated in cancerogenesis. It is still unclear how the cell determines which of the three possible Wnt response mechanisms should be activated, but the decision process is most likely dependent on Dishevelled proteins. Dishevelled family members interact with many diverse targets, however, molecular mechanisms underlying these binding events have not been comprehensively described so far. Here, we investigated the specificity of the PDZ domain from human Dishevelled-2 using C-terminal phage display, which led us to identification of a leucine-rich binding motif strongly resembling the consensus sequence of a nuclear export signal. PDZ interactions with several peptide and protein motifs (including the nuclear export signal sequence from Dishevelled-2 protein) were investigated in detail using fluorescence spectroscopy, mutational analysis and immunoenzymatic assays. The experiments showed that the PDZ domain can bind the nuclear export signal sequence of the Dishevelled-2 protein. Since the intracellular localization of Dishevelled is governed by nuclear localization and nuclear export signal sequences, it is possible that the intramolecular interaction between PDZ domain and the export signal could modulate the balance between nuclear and cytoplasmic pool of the Dishevelled protein. Such a regulatory mechanism would be of utmost importance for the differential activation of Wnt signaling cascades, leading to selective promotion of the nucleus-dependent Wnt β-catenin pathway at the expense of non-canonical Wnt signaling.
PDZ domains are ubiquitous protein interaction modules that play a key role in cel­lular signaling. Their binding specificity involves recognition of the carboxyl-termi- nus of various proteins, often belonging to receptor and ion channel families. PDZ domains also mediate more complicated molecular networks through PDZ-PDZ in­teractions, recognition of internal protein sequences or phosphatidylinositol moi­eties. The domains often form a tandem of multiple copies, but equally often such tandems or single PDZ domain occur in combination with other signaling domains (for example SH3, DH/PH, GUK, LIM, CaMK). Common occurrence of PDZ domains in Metazoans strongly suggests that their evolutionary appearance results from the complication of signaling mechanisms in multicellular organisms. Here, we focus on their structure, specificity and role in signaling pathways.
PDZ domains are ubiquitous protein–protein interaction modules which bind short, usually carboxyterminal fragments of receptors, other integral or membrane-associated proteins, and occasionally cytosolic proteins. Their role in organizing multiprotein complexes at the cellular membrane is crucial for many signaling pathways, but the rules defining their binding specificity are still poorly understood and do not readily explain the observed diversity of their known binding partners. Two homologous RhoA-specific, multidomain nucleotide exchange factors PDZRhoGEF and LARG contain PDZ domains which show a particularly broad recognition profile, as suggested by the identification of five diverse biological targets. To investigate the molecular roots of this phenomenon, we constructed a phage display library of random carboxyterminal hexapeptides. Peptide variants corresponding to the sequences identified in library selection were synthesized and their affinities for both PDZ domains were measured and compared with those of peptides derived from sequences of natural partners. Based on the analysis of the binding sequences identified for PDZRhoGEF, we propose a sequence for an ‘optimal’ binding partner. Our results support the hypothesis that PDZ–peptide interactions may be best understood when one considers the sum of entropic and dynamic effects for each peptide as a whole entity, rather than preferences for specific residues at a given position.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.