Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Maf1 was the first protein discovered to regulate polymerase III RNA in yeast and because it is evolutionarily conserved, a Maf1 ortholog also serves to restrain transcription in mouse and human cells. Understanding the mechanism of the regulation has been made possible by recent studies showing that Maf1 is a nuclear/cytoplasmic protein whose subcellular distribution and hence negative regulation of Pol III transcription is mediated by the nutrient-sensing signaling pathways, TOR and RAS. Under stress conditions and during growth in a nonfermentable carbon source Maf1 is dephosphorylated and imported to the nucleus. In its non-phosphorylated form, Maf1 interacts with the polymerase III transcription machinery. Phosphorylation serves to locate Maf1 to the cytoplasm under favorable growth conditions, thereby preventing it from non-negatively regulating polymerase III when high levels of tRNA transcription are required. Relocation of Maf1 to the cytoplasm is dependent on Msn5, a carrier responsible for export of several other phosphoproteins out of the nucleus. The absence of Maf1-mediated control of tRNA synthesis impairs yeast viability in nonfermentable carbon sources. Moreover, in cells grown in a nonfer mentable carbon source, Maf1 regulates the levels of different tRNAs to various extents. This differential regulation may contribute to the physiological role of Maf1.
In contrast to most other eukaryotic organisms, yeast can survive without respiration. This ability has been exploited to investigate nuclear genes required for expression of mitochondrial DNA. Availability of complete Saccharomyces cerevisiae genomic sequence has provided additional help in detailed molecular analysis. Seven of the eight major products encoded by mitochondrial DNA are hydrophobic subunits of respiratory complexes in the inner membrane. Localization of the translation process in the same cellular compartment ensures synthesis of mitochondrially encoded proteins near sites of their assembly into multimeric respiratory complexes. Association of mitochondrial ribosomes with the membrane is mediated by mRNA-specific translational activators, that are involved in the recognition of initation codon. The newly synthesized mitochondrial proteins are transferred to membrane by a specific export system. This review discusses the role of membrane-localized factors responsible for quality control and turnover of mitochondrially synthesized subunits as well as for assembly of respiratory complexes.
Yeast mitochondrial DNA codes for eight major polypeptides. Translation of he mitochondrially encoded polypeptides in strains with mutated mitochondrial release factor, mRF1, was found to result in the synthesis of a novel protein, V2. Different mrf1 alleles were associated with different efficiency of V2p synthesis. Translation of V2p was enhanced by paromomycin. Comparative analysis of peptides resulting from protease digestion indicated that V2p is a derivative of Var1p. According to our hypothesis, V2p represents a readthrough product of the natural stop codon in VAR1 mRNA.
We studied expression of the NAM9 gene of Saccharomyces cerevisiae that was previously reported to code for a mitochondrial ribosomal protein. Increase in NAM9 gene dosage is accompanied by the increase in both mRNA and protein. The levels of the NAM9 transcript and protein are both reduced in cells growing on glucose as compared to cells growing on galactose as a carbon source. Nam9p accumulates to the same level in rho(o) and rho(+) cells. These results confirm previous data indicating diverse regulation of different mitochondrial ribosomal protein genes and suggest that expression of Nam9p is not co-ordinated with the expression of other mitochondrial ribosomal components.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.