Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
To assess the role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity in hemp (Cannabis sativa L.) plants, the growth parameters, Cd accumulation, photosynthetic performance and activities of major antioxidant enzymes were investigated in hemp seedlings treated with 500 µM SA, under 0, 25, 50, and 100 mg Cd kg⁻¹ sands (DW) conditions, respectively. Cd exposure resulted in a small reduction in biomass (12.0–26.9% for root, and 8.7–29.4% for shoot, respectively), indicating hemp plants have innate capacity to tolerant Cd stress. This was illustrated by little inhibition in photosynthetic performance, unchanged malondialdehyde content, and enhancement of superoxide dismutase (SOD) and peroxidases (POD) activities in hemp plants. Cd content in root is 25.0–29.5 times’ higher than that in shoot, suggesting the plant can be classified as a Cd excluder. It is concluded that SA pretreatment counteracted the Cd-induced inhibition in plant growth. The beneficial effects of SA in alleviating Cd toxicity can be attributed to the SA-induced reduction of Cd uptake, improvement of photosynthetic capacity, and enhancement of SOD and POD activities.
The nuclear receptor RXRα (retinoid X receptor-α) is a transcription factor that regulates the expression of multiple genes. Its non-genomic function is largely related to its structure, polymeric forms and modification. Previous research revealed that some non-genomic activity of RXRα occurs via formation of heterodimers with Nur77. RXRα–Nur77 heterodimers translocate from the nucleus to the mitochondria in response to certain apoptotic stimuli and this activity correlates with cell apoptosis. More recent studies revealed a significant role for truncated RXRα (tRXRα), which interacts with the p85α subunit of the PI3K/AKT signaling pathway, leading to enhanced activation of AKT and promoting cell growth in vitro and in animals. We recently reported on a series of NSAID sulindac analogs that can bind to tRXRα through a unique binding mechanism. We also identified one analog, K-80003, which can inhibit cancer cell growth by inducing tRXRα to form a tetramer, thus disrupting p85α–tRXRα interaction. This review analyzes the non-genomic effects of RXRα in normal and tumor cells, and discusses the functional differences based on RXRα protein structure (structure source: the RCSB Protein Data Bank).
Soil erosion is the main pathway of nutrients to fresh water in highly erodible regions. In this study, a dynamic erosion-type nonpoint source (NPS) pollution model was proposed to investigate spatiotemporal characteristics of adsorbed NPS total nitrogen (TN) load before and after returning farmland. Results indicate that: 1) the erosion-type NPS TN load showed a significant decreasing trend since the implementation of a returning farmland project from 1997, where the average TN load in 2009-12 was 2719.7 t/a, which decreased by about 80.7% compared with the initial period of governance (1995-98); 2) Spatial distributions of erosion-type NPS TN load are closely related to sediment yield, the high risk values of TN load mainly occur along the main river banks of the Yanhe River watershed from northwest to southeast; 3) Before returning farmland, the adsorbed NPS TN load in the Yanhe River upstream was relatively large, while after that it had a decreasing trend in the upper reaches of the Yanhe River watershed. Dry land is still a critical source area of NPS pollution load in the loess hilly and gully region. Therefore, it is essential to strengthen water conservation measures in highly erodible regions for the amelioration of regional water environment quality.
Cadmium (Cd) is regarded as one of the most toxic environmental pollutants. A better understanding of the growth response, uptake, and translocation of Cd in barnyard grass (Echinochloa crus-galli) would be helpful for evaluating the role of this grass species as a potential candidate to be used for phytoremediation. The studied plants were grown in treated soils with increasing doses of Cd (0, 0.3, 0.6, 0.9, and 1.5 mg·kg⁻¹). The results showed that Cd contents in plant tissues were found to increase with increasing doses of Cd. The pattern of Cd accumulation in different parts of the plant were found as: root > aboveground part > seed. Translocation factor (TF) values were found to be less than 1, and translocation from root to aboveground part was found to be higher as compared to that of aboveground part to seed. There was no significant difference on the aboveground part fresh weight (FW) and tiller number per plant under different concentrations of Cd stress. The root FW and the lengths of roots and shoots were significantly decreased in response to Cd treatments at low concentrations. However, the 1.5 mg·kg⁻¹ Cd application didn’t affect significant changes on the root and shoot length than that of the control. A high concentration of cadmium supply could promote chlorophyll content. SOD showed a similar trend to POD in Cd-exposed plants, with an increase at lower concentrations and a decrease at higher concentrations.
Soil erosion is one of the most important environmental concerns in the hilly and gully region of the Chinese Loess Plateau. In this study, a distributed soil erosion model considering the shallow gully erosion (ephemeral gully erosion) was used to simulate and track soil erosion changes in an easily-eroded watershed from 1985 to 2010. Results indicate that: 1) The distributed soil erosion model based on the RUSLE is suitable for the hilly and gully region of the Loess Plateau and can better improve modeling capabilities for future study of sediment and pollution. 2) The overall soil erosion intensity in the southeast and central parts of the watershed is higher than that of the northwest. The spatiotemporal variations of soil erosion in the whole watershed are largely related to rainfall erosion distribution and land use layout. 3) Effects of returning farmland measures on soil erosion in the Yanhe River upstream are remarkable, and the Panlong River basin needs to further strengthen soil and water conservation measures, and the Yanhe downstream cannot also be ignored in future watershed management planning. 4) Dry land is the critical source area before and after returning farmland in the watershed. The implementation of soil and water conservation measures of dry land is a top priority for soil erosion prevention and control of the watershed. Results may provide scientific reference for erosion identification of critical source areas and land use planning in the loess hilly and gully region.
Biochar’s production and application in soils has been suggested as a means of abating climate change by sequestering carbon while simultaneously providing energy and increasing crop yields. However, little is known about biochar’s effect on nitrification in alkaline soil. This study focused on the effect of wheat straw-derived biochar (0%, 2%, 5%, and 10%, w/w) on nitrification in a calcareous clay soil with an incubation experiment. Moreover, the variations of ammonia-oxidizing bacteria (AOB) amount, urease activity, pH, and inorganic nitrogen contents during the incubation and their relationships with potential nitrification rates were also explored. The results indicated that nitrification was enhanced by wheat straw-derived biochar and showed an obvious dose-response to biochar application rate. Generally, the potential nitrification rate increased with incubation time elapsing for all four treatments, which were in the ranges of 21.0-33.9, 23.7-45.1, 21.4-57.5, and 31.8-66.1 nmol N/(g dry soil∙h), respectively. The potential nitrification rate increased by 1.36-2.40 times at 10% biochar application rate compared with the control (0%) at the same incubation stage. Except for NH₄⁺-N content of the soil-biochar mixture, AOB amount, urease activity, pH, and NO₃⁻-N content all showed increasing trends during incubation. Moreover, correlation analysis indicated that the potential nitrification rate was positively correlated with AOB amount, urease activity, pH, and NO₃⁻-N content (r≥0.713, P<0.01), but negatively correlated with NH₄⁺-N content (r = -0.408, P<0.01). Notably, though the biochar application in the Loess Plateau region has more benefits for soil condition improvement, the enhanced nitrification induced by biochar may pose a negative effect on fertilizer bioavailable efficiency in the agricultural system.
Estimation of tree biomass is an essential part of studies on carbon sequestration and cycling in forest ecosystem. Small trees grow in the understory and allometric development is different from that of mature trees. However, less attention has been paidto biomass estimates of small trees, especially in mixedforest where tree competition is intensive. Tree allometric equations at both branch level andat whole tree level were, thus, developed and compared for the small trees of Korean pine (Pinus koraiensis) in a mixedstandin northeastern China. At branch level, the best model for live branch biomass was one which used a combination of branch diameter, branch length, whorl position and relative branch depth. For needle biomass, the best model did not significantly improve the estimate with more variables. At whole tree level, stem diameter at breast height (DBH) was a significant determinant of biomass for different components. Tree height did not significantly improve biomass estimation at all. Tree crown variables provedto be useful for estimating all biomass components except the fine roots. The variable measuring abovegroundcompetition intensity was a significant negative determinant of biomass components except canopy biomass. Comparisons to published equations for the same species growing in Heilongjiang province in northeastern China andin central South Korea, were also presented. Both total aboveground biomass and belowground biomass in our study showed somewhat smaller values for a given diameter than the trees growing in other two places.
Due to the shortage of water resources in China, the state has implemented a series of rainwater harvesting projects. The safety of water quality cannot be guaranteed due to the lack of an effective construction, running, and management system. Slow filters are low-maintenance systems that do not require special equipment. In order to improve the performance of SSF in terms of the removal of bacteria and solid granules, e.g., the microorganisms attached to the surface of a single grain of the filtering material under a scanning electron microscope (50×) have been studied. Based on the improvements of conventional slow sand filtration (SSF), the bio-slow sand filtration method has effectively mitigated and helps to remove bacteria and other microbiological contaminants, as well as heavy metals, ammonia, nitrogen, organic material, and turbidity of the harvested rainwater. The removal efficiency of bioslow sand filtration was approximately 20-30% on particulate organic carbon, above 95% on ammonianitrogen, and better than 96%, 95%, 95%, 80%, 70%, and 60% on Cu2+, Cd2+, Fe2+, Zn2+, Mn2+, and Pb2+, respectively. The effluent quality meets the requirements of “standards for drinking water quality” in China. The result indicated the bio-slow sand filtration method could achieve better water quality results as an available water treatment technology.
Flowering at a suitable time is critical for ensuring reproductive success in the plant life cycle. The transition from vegetative growth to reproduction development is finely tuned by environmental and endogenous signals. To date, control of flowering involves five genetically defined pathways. However, the role of type-A response regulator genes in regulation of this process remains largely unclear. In the present study, we cloned and characterized a type-A response regulator gene (RhRR1) in rose. The expression of RhRR1 significantly increased in axillary bud during the transition from the vegetative growth to the start of floral differentiation, and in rose flowers in response to exogenous cytokinin or 1-methylcyclopropene (1-MCP) treatments, while that expression was markedly repressed by ethylene treatment. RhRR1 has the highest degree of sequence homology to AtARR8 and AtARR9, and is localized in the nucleus. Ectopic expression RhRR1 in Arabidopsis promoted early flowering, accompanied with the less rosette leaf number at bolting, and shorter bolting time after transferring the plants into pots. In addition, the expression of flowering regulatory genes in RhRR1 transgenic Arabidopsis, including FLOWERING LOCUS D, GA REQUIRING 1, LUMINIDEPENDENS, LEAFY, and TWIN SISTER OF FT clearly increased. These results allow us to infer that RhRR1 plays a key role in the control of flowering.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l-1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.
Soil microbial communities play a vital role in soil carbon and carbon sequestration in forest ecosystems. In this study, soils were sampled in Tianbaoyan National Nature Reserve in southeastern China from four Nothotsuga longibracteata forests, including a pure N. longibracteata forest (NF), N. longibracteata + hardwood mixed forest (NHF), N. longibracteata + Rhododendron simiarum mixed forest (NRF), and N. longibracteata + Phyllostachys pubescens mixed forest (NPF). Our objective was to precisely quantify soil physicochemical properties, microbial biomass, microbial communities, and to evaluate their interrelationships. We used biochemical measurements, a fumigation-extraction method, and phospholipid fatty acid (PLFA) analysis method to show that – except for pH and soil bulk density (SBD) – soil physicochemical properties differed markedly among the forest types. Microbial biomass carbon (MBC) and nitrogen (MBN) were highest in NHF soils, while the ratio of microbial biomass carbon to nitrogen (MBC:MBN) was highest in NRF and NPF soils. Moreover, the microbial communities of the four forest types exhibited distinct profiles: the highest total PLFA content and content of Grampositive bacteria (Gram(+)), Gram-negative bacteria(Gram(-)), and fungi were found in NRF. Additionally, NHF soil exhibited the highest actinomycetes content, while the highest protozoal content was found in NF soil. The analysis of individual PLFAs using principal component analysis (PCA) demonstrated a clear association of distinct soil PFLA characteristics for each forest type. In conclusion, the soil microbial community structure can be significantly influenced by changes in soil organic carbon (SOC) and MBN. Comparing soil microbial properties in different N. longibracteata forests can help us understand the influence of forest types on the structure of microbiota within a system.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.