Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
One hundred wheat lines, derived from monosomic additions of chromosome 1R of rye inbred line R12 (Chinese rye), were detected by PCR amplification using rye-specific primer pairs. Only 5 wheat lines, 1R296, 1R330, 1R314, 1R725,and 1R734, were determined to contain rye chromatin. While 1R296 and 1R330 were highly susceptible to stripe rust and powdery mildew, 1R314, 1R725 and IR734 were highly resistant to both diseases. Acid-polyacrylamide gel electrophoresis showed that the ω-secalin bands were absent in 1R314, but present in the other 4 wheat lines. Genomic in situ hybridization indicated that 1R296, 1R330, and 1R725 contained translocations involving the whole short arm of chromosome 1R. However, 1R314 and 1R734 contained a pair of wheat chromosomes with small, terminal, rye-derived chromosome segments. The results suggest that the translocation breakpoint of 1 RS in 1R314 was located between the Sec-1 locus and the disease-resistance loci, while in line 1R734, the breakpoint was located between the Sec-1 locus and the centromere. Taking account of the improved disease resistance of 1R725,1R314 and 1R734, the chromosome arm 1 RS of R12 may represent new and valuable disease resistance resources for wheat improvement.
Rye (Secale cereale L.) chromosome arm 1RS could delay leaf senescence, and change in H₂O₂ content is a useful index for weighing the ability to delay the senescence. Two wheat cultivars, Chuannong12 (CN12) and Chuannong 18 (CN18), harboring the wheat–rye 1BL/1RS translocated chromosome were investigated for H₂O₂ change and physiological index after flowering under field conditions, and MY11, the agronomical parent of both CN12 and CN18, was used as the control. A combined change in the peak value of CdSe/ZnS quantum dot (QD) fluorescence and morphological observation indicated that the H₂O₂ contents in CN12 and CN18 were generally lower than that in MY11. They both had higher values for net photosynthetic rate (Pn), stomatal conductance (Gs), Fv/F'm F'v/F'm, and photochemical quenching of PSII (qP) than MY11 only in the late measurement stage. Some small differences were also observed, such as CN12 and CN18 wheat cultivars having higher and longer photosynthetic competence than MY11 during the grain filling stage, which perhaps resulted from a mechanism for removing oxidative species, especially H₂O₂.
A repetitive sequence of 411 bp, named pSaO5₄₁₁, was identified in the Secale africanum genome (Rᵃ) by random amplified polymorphic DNA (RAPD) analysis of wheat and wheat-S. africanum amphiploids. GenBank BLAST search revealed that the sequence of pSaO5₄₁₁ was highly homologous to a part of a Ty1 -copia retrotransposon. Fluorescence in situ hybridization (FISH) analyses indicated that pSaO5₄₁₁ was significantly hybridized to S. africanum chromosomes of a wheat-S. africanum amphiploid, and it was dispersed along the Secale chromosome arms except the terminal regions. Basing on the sequence of pSaO5₄₁₁, a pair of sequence-characterized amplified region (SCAR) primers were designed, and the resultant SCAR marker was able to target both cultivated rye and the wild Secale species, which also enabled to identify effectively the S. africanum chromatin introduced into the wheat genome.
A repetitive sequence of 491 bp, named pMD232- 500, was isolated from S. cereale cv. Kustro using wheat SSR marker Xgwm232. GenBank BLAST search revealed that the sequence of pMD232-500 was highly similar to a part of retrotransposon Nusif-1. Fluorescence in situ hybridization (FISH) analysis using pMD232-500 as probe indicated that only 14 Thinopyrum intermedium chromosomes and all the chromosomes of S. cereale cv. Kustro bear FISH signals, however, no FISH signals were observed on Dasypyrum villosum chromosomes. In addition, the FISH signals were distributed on whole arms except their terminal regions. Further genomic in situ hybridization (GISH) analysis using genomic DNA from Pseudoroegneria spicata indicated that the 14 Th. intermedium chromosomes bearing FISH signals should belong to J genome. Thereafter, the repetitive elements pMD232-500 showed the unambiguous features of genomic constitution of Th. intermedium. In addition, the results in the present study have indicated the similarity of genomes from Th. intermedium and S. cereale.
Pitaya contains various types of polyphenols, flavonoid and vitamins which are beneficial for health and it is among the most important commercial tropical fruits worldwide. Endophytic bacteria might be beneficial for plant growth and yield. However, bacterial diversity in pitaya is poorly characterized. In this study, fruits of white and red pitayas from three different origins (Thailand, Vietnam and China) were chosen for endophytic bacteria diversity investigation by using Illumina HiSeq second-generation high-throughput sequencing technology. Large number of endophytic bacteria were detected and 22 phyla, 56 classes, 81 orders, 122 families and 159 genera were identified. Endophytic bacteria diversity was uneven among pitaya fruits from different origins and bacteria structure was different between white pitaya group and red pitaya group. Phylum Bacteroidetes, classes Bacteroidia and Coriobacteriia, orders Bacteroidales and Coriobacteriales, families Prevotellaceae, Bacteroidaceae, Ruminococcaceae, Paraprevotellaceae, Rikenellaceae, Alcaligenaceae and Coriobacteriaceae, genera Prevotella, Bacteroides, Roseburia, Faecalibacterium and Sutterella were statistically significant different species (P < 0.05) between white and red pitayas. These findings might be useful for growth improvement, fruit preservation and processing of different pitaya species from different origins.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.