Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A response surface optimization based on ionic liquid dispersive liquid phase microextraction was developed for analysis of the endocrine disrupting compounds bisphenol A and 4-nonylphenol in water samples. The volume of the extraction solvent, volume of dispersive solvent, and pH were found to have significant effects on the response. Analysis of variance indicated that the model was significant at a high level. The reproducibility was investigated in six replicate experiments under optimum conditions. Taken together, these results indicated that the developed method would be a useful green method for rapid determination of bisphenol A and 4-nonylphenol at trace levels in tap and surface waters.
Potato is one of the most important food crops in the world. Many plant transcription factors (TFs) have been demonstrated to be essential for improvement of plant stress tolerance traits. However, very few TFs were used for improving potato stress tolerance. In this study, we presented the characterization of a new potato StNAC2 gene. The StNAC2 protein contains five subdomains of NAC proteins and belongs to NAP subfamily. StNAC2 is constitutively expressed in potato leaves, stems, tubers, flowers and roots. Transcripts of StNAC2 were significantly induced by Phytophthora infestans, the causal agent pathogen of potato late blight. StNAC2 also could be induced by wounding, salt, drought as well as signal molecules such as salicylic acid and abscisic acid, suggesting that StNAC2 transcription factor involved in the signal transduction cascades in responses to abiotic and biotic stresses in potato. Overexpression of StNAC2 in transgenic potato significantly enhanced salt tolerance in vitro and drought tolerance in pot growing condition. Thus, the functional analysis of the new StNAC2 gene in this study will enrich knowledge for understanding the function of the NAC genes in potato stress tolerance.
Background. Minced meats undergo oxidative changes and develop rancidity more quickly than intact muscle since grinding exposes more of the muscle surface to air and microbial contamination. Due to concerns about toxicological safety of synthetic antioxidants, recent studies have put more focus on natural antioxidant compounds derived from food components. Material and methods. The effects of four natural antioxidants (vitamin E, carnosine, grape seed extract and tea catechins) on oxidative processes and metmyoglobin reducing activity in raw beef patties during refrigerated (4°C) storage were investigated and the results were compared with butylated hydroxyanisole treatment patties. The correlation of lipid oxidation, colour and metmyoglobin reducing activity of beef patties were also studied. Results. Samples treated with carnosine had the highest redness values on the eighth day. Tea catechins, vitamin E and grape seed extract showed higher protective effect against lipid oxidation than carnosine. Metmyoglobin reducing activity increased greatly in all samples during the storage. Significant correlation between redness value and lipid oxidation was demonstrated, while a weak correlation between metmyoglobin reducing activity and any other parameters was shown.
There have been no reports on the relationship between virulence genes and gastric diseases based on the same bacterial colonization density. Our results indicated that Helicobacter pylori virulence genes were more relevant than colonization density as a pathogenic mechanism of gastric diseases, which helps elucidate the pathogenic mechanisms of bacteria and aids in the development of improved strategies for the treatment of gastric disease.
Biochar produced from sewage sludge could provide an important alternative to waste management practices while offering an opportunity to improve soil properties and reduce the risk of contamination from direct applications of sewage sludge soil amendments. We assessed the impacts of different rates of biochar application (20, 40, 60 t ha-1) to peanuts grown in a loamy sand soil in the North China Plain on composition of the soil microbial community, soil bulk density (BD), pH, total carbon (TC), total nitrogen (TN), C:N, available phosphorus (P), available potassium (K), dissolved organic carbon (DOC) and crop yield. We found that sewage sludge biochar application increased TC, TN, available K, and C:N, and decreased soil BD and pH and had variable effects on DOC. Amendment with biochar increased microbial biomass and the proportion of Gram-positive bacteria, Gram-negative bacteria, fungi and Actinomycetes, while it decreased the ratios of groups of bacteria. The highest crop yield was achieved under 40 t ha-1 of biochar. Our study suggests that the lower rates of sewage sludge biochar application could improve soil physicochemical properties and increase levels of soil microbes and crop yield; however, the highest rate may induce negative effects on microbe community composition.
Cucumber (Cucumis sativus L.), a biologically, agriculturally, and economically important vegetable crop consumed worldwide. Catechins (Cs) are the main astringent substances that affect the oral sensory quality of cucumber fruit, and they exhibit potential human health benefits in the amelioration of chronic diseases. However, little is known about the primary components of Cs or their regulatory mechanisms in cucumber. In this study, dynamic changes in C levels and the expression patterns of C-related genes in the peel and flesh of cucumber inbred line ‘YB’, which is strongly astringent during the early fruit development period, were examined. Only three types of Cs, gallocatechin, C and epigallocatechin gallate, were detectable in cucumber fruit, and their contents decreased with fruit development. Gallocatechin was the major C and was present in significantly greater concentrations in peel than in flesh. The expression profiles of 38 genes related to C biosynthesis were investigated by qRT-PCR. We hypothesized that CsPAL3, CsPAL5, CsC4H1, Cs4CL2, CsCHS2, CsCHI2, CsDFR2, CsF3H3, and CsANS are the important C biosynthesis regulators in cucumber fruit. The isolation of genes encoding biosynthetic enzymes provides important molecular resources for further genetic manipulations of C biosynthesis in cucumber.
Potamogeton crispus was exposed to a range of external yttrium (Y) concentrations (0–30 μM) for 20 days to investigate the effects of Y accumulation on the homeostasis of elements and the photochemistry of photosystem II (PS II). Yttrium accumulation increased in a concentration-dependent manner, with most Y being associated with polysaccharides. At all Y concentrations, significant declines in relative growth rates (fresh weight basis), photosynthetic pigments, and protein content were observed, as well as an increase in leaf area damage. Yttrium accumulation disrupted elemental homeostasis, with decrease observed for concentrations of micro- and macro-elements such as Cu, Zn, Mg, Mn, and K, and increases for S, Fe, and Ca. A significant reduction in PS II photochemistry occurred in Y-treated plants, as evidenced by decrease in Fv/Fm, Fv/Fo, Fv, ψo, φEo, φRo, φPo, and PIABS, and increases in Fo, Fo/Fv, and energy fluxes per reaction center (ABS/RC, ETo/RC, TRo/RC, and DIo/RC). In addition, Y treatment significantly reduced chloroplast ATPase activity and ATP level and induced changes in chloroplast ultrastructure including an increase in plastoglobule size and organelle shape. AsA and GSH content slightly increased at 10 µM Y and then declined and that of non-protein thiol was found to be enhanced at all the Y concentrations. The results suggest that Y exposure led to general disarray of cellular functions, similar to responses observed for other trace metals.
Long non-coding RNAs (lncRNAs) are series of transcripts with important biological functions. Various diseases have been associated with aberrant expression of lncRNAs and the related dysregulation of mRNAs. In this review, we highlight the mechanisms of dynamic lncRNA expression. The chromatin state contributes to the low and specific expression of lncRNAs. The transcription of non-coding RNA genes is regulated by many core transcription factors applied to protein-coding genes. However, specific DNA sequences may allow their unsynchronized transcription with their location-associated mRNAs. Additionally, there are multiple mechanisms involved in the post-transcriptional regulation of lncRNAs. Among these, microRNAs might have indispensible regulatory effects on lncRNAs, based on recent discoveries.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.