We demonstrated that a quickly growing hamster skin melanoma developed a tumor after autologous implantation into the anterior chamber of the eye. Tumor cells were seen invading all the surrounding tissues, including the iris, ciliary body, choroid and cornea. Histological examination confirmed the presence of numerous blood vessels of large diameter. Their walls were very thin, thus only the endothelium could be identified using light microscopy. Macrophages, microemboli and extravasations were present within the tumor mass.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Spectroscopic, photochemical and biological properties of indocyanine green (ICG) are presented. Light over 800 nm is effectively absorbed by ICG. This property as well as photochemical behaviour of ICG make it a very suitable dye for photodynamic treatment of melanoma cells. Cytotoxicity of ICG itself and the effect of photodynamic therapy (PDT) were evaluated by following the growth of human (SKMEL 188) and mouse (S91) melanoma cells. The surviving fraction of the cells irradiated (λex = 830 nm) vs non-irradiated, treated with the same dose of ICG, is significantly decreased (5- to 10-fold). These results show that ICG is a very promising dye for photodynamic therapy of melanomas.
Standard ocular tumor treatment includes brachytherapy, as well as proton therapy, particularly for large melanoma tumors. However, the effects of different radiation types on the metastatic spread is not clear. We aimed at comparing ruthenium (106Ru, emitting β electrons) and iodine (125I, γ-radiation) brachytherapy and proton beam therapy of melanoma implanted into the hamster eye on development of spontaneous lung metastases. Tumors of Bomirski Hamster Melanoma (BHM) implanted into the anterior chamber of the hamster eye grew aggressively and completely filled the anterior chamber within 8-10 days. Metastases, mainly in the lung, were found in 100% of untreated animals 30 days after enucleation. Tumors were irradiated at a dose of 3-10 Gy with a 106Ru plaque and at a dose of 6-14 Gy using a 125I plaque. The protons were accelerated using the AIC-144 isochronous cyclotron operating at 60 MeV. BHM tumors located in the anterior chamber of the eye were irradiated with 10 Gy, for the depth of 3.88 mm. All radiation types caused inhibition of tumor growth by about 10 days. An increase in the number of metastases was observed for 3 Gy of β-irradiation, whereas at 10 Gy an inhibition of metastasis was found. γ-radiation reduced the metastatic mass at all applied doses, and proton beam therapy at 10 Gy also inhibited the metastastic spread. These results are discussed in the context of recent clinical and molecular data on radiation effects on metastasis.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW