Information on the spatial variability in plant disease is essential for location-based disease management. In the current study, the spatial distribution of tomato early blight disease was ascertained in District Gilgit, GilgitBaltistan, Pakistan. The comprehensive field survey was carried in two growing seasons (2014–2015), whereas in each growing season, 62 tomato fields were surveyed. Based on the distribution of disease, the respective thematic maps (incidence and severity) were prepared using Arc Map 10.1 with spatial analyst function of Arc GIS software by means of the inverse distance weight (IDW) interpolation method. Results indicate that early blight of tomato is spatially distributed in both growing seasons. However, in the first growing season, the disease incidence ranged from 10.22% to 44.16% and during later season 14.03–49.16%, whereas 5.37–16.40% and 6.52–26.94% severity was recorded. Furthermore, this information indicates that higher disease infestation occurred in 2015 in relation to 2014. This information linked to metrological data (temperature, precipitation and relative humidity), seemingly favored the early blight development during the growing period. Seven botanical extracts were tested against pathogen Alternaria solani at different concentrations (4, 6 and 8%). Results revealed that all tested plant extracts showed antifungal activities. However, at 8% concentration of plant extract, Datura starmonium, Berberis orthobotry, Podophyllum emodi and Uretica dioica exhibited >60%, while Peganum harmala, Artemisia maritima and Capparis spinosa <60% antifungal properties. The information generated due to this study could help the tomato growers regarding disease management and selection of resistant cultivars, improving profitability and food security in the Gilgit region.
Due to climate change, the world average surface temperature has increased 0.3-0.6ºC over the past 100 years. The northern belt of Pakistan holds the largest storage of freshwater (ice and snow) after the polar region, and provides water to the downstream population for agriculture plus domestic and hydropower resources. This study focuses on a possible explanation for the seemingly declining behavior of Darkut Glacier using evidence from ground observation and climate station data in Yasin and Gupis valleys in northern Pakistan. We analyzed data obtained from two stations includes the Water and Power Development Authority of Pakistan (WAPDA, 1995-2010) and the Pakistan Meteorology Department (PMD, 1986-2015). Results of both climate station data depicted an increase in total precipitation and a decrease in winter and spring seasons. The study also highlighted an increase in mean minimum and maximum temperatures, particularly in winter and spring. Similarly, the trend of solar radiation also has decreased. Therefore, enhanced snout fluctuation and the melting rate of Darkut occurred during the study period. All of these changes have had a negative impact on the snout of the glacier, which has retreated 6 m during 2013 and 2016, and a lake has formed behind the terminal moraine.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.