Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Soil salinity is one of the major environmental stress factors limiting crops growth, development, and productivity worldwide. The aim of this study was to compare differences of salinity tolerance between diploid (cv. TY03209) and tetraploid (cv. TY03410) seedlings of sugar beet (Beta vulgaris L.) treated with various concentrations (0, 50, 100, 200, and 300 mM) of NaCl. Our results indicated that fresh weight (FW) and dry weight (DW) of shoot in tetraploid were remarkably higher than those in diploid when subjected to various concentrations of NaCl (except for FW under 200 mM). At 200 and 300 mM NaCl, tetraploid obviously accumulated less Na⁺ in its shoots and roots compared with diploid. However, there were no differences in K⁺ accumulation between tetraploid and diploid under salinity stress. Our results also showed tetraploid displayed a smaller Na⁺/K⁺ ratio and a stronger selective capacity for K⁺ over Na⁺ than diploid when exposed to high-salt stress (300 mM). Furthermore, it was observed that tetraploid possessed a bigger net K⁺ uptake rate and a smaller net Na⁺ uptake rate compared to diploid at high-salt condition. We also investigated the relative expression levels of six genes related to K⁺ and Na⁺ transport in roots of diploid and tetraploid by qRT-PCR method, and found that BvHKT1;1, BvNHX1, BvSKOR, and BvSOS1 were induced by additional 50 mM NaCl, and their transcript abundances in tetraploid were relatively higher than those in diploid. The expression level of BvAKT1 was down-regulated in tetraploid during 3–48 h of salt treatment, whilst basically remained unchanged in diploid. It was observed that the transcript abundance of BvHAK5 in diploid displayed the reduced trend with the prolonging of salt treatment time compared to tetraploid. In addition, soluble sugars contents were obviously higher in tetraploid than in diploid exposed to 100, 200, and 300 mM NaCl. Taken together, these results suggested that tetraploid exhibited more tolerant to salinity stress than diploid in sugar beet by accumulating less Na⁺ and more soluble sugars, and by maintaining lower Na⁺/K⁺ ratio and greater capacity of selective absorption for K⁺ over Na⁺. The results of this study provide insights into physiological and molecular consequences of polyploidization in sugar beet.
Salinity is one of the major environmental factors, which limits crop productivity worldwide. To investigate sodium (Na+) uptake pathways in sugar beet (Beta vulgaris L.) under mild salt conditions, in the present work, Na+ and potassium (K+) accumulation, Na+/K+ ratio, and Na+ and K+ net uptake rate in plants exposed to various concentrations of NaCl (0–50 mM) were analyzed in the absence or presence of KCl (10 and 50 mM) and K+ channel inhibitors Tetraethylammonium-Cl (TEA+, 5 and 10 mM), CsCl (Cs+, 3 and 6 mM) and BaCl2 (Ba2+, 5 and 10 mM). The results showed that high concentration (50 mM) of KCl significantly reduced Na+/K+ ratios in shoot and root of sugar beet in the absence or presence of NaCl. 10 or 50 mM KCl also decreased Na+ net uptake rate, or had no effects on it at 5, 10, and 50 mM NaCl, while enhanced K+ net uptake rate with external NaCl concentration at 5 and 25 mM. It seemed that high external K+ levels could maintain lower Na+/K+ ratio in sugar beet by enhancing K+ uptake and restricting Na+ uptake. Both 5 and 10 mM TEA+, which are considered to be a blocker of K+ channels, had no significant effects on net uptake rates of Na+ and K+ in sugar beet in the absence or presence of NaCl. However, 3 or 6 mM Cs+, which is also known to be an inhibitor of the K+ inward-rectifying channel (AKT1), led to significant reduction of K+ net uptake rate but did not affect Na+ net uptake rate in the presence of NaCl. 5 or 10 mM Ba2+, which is known as another blocker of K+ channel and transporter (HKT), not only reduced Na+ net uptake rate but also decreased K+ net uptake rate (except at 25 mM NaCl) in sugar beet at 5–50 mM NaCl. It is clear that Na+ uptake in sugar beet is very sensitive to Ba2+ but insensitive to TEA+ or Cs+, and that K+ uptake is sensitive to Cs+ or Ba2+, whereas it is insensitive to TEA+. We proposed that the AKT1 may mediate K+ uptake and HKT1 may mediate Na+ uptake in sugar beet at 5–50 mM NaCl.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.