Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The preparation of a Gd-doped Ti/SnO₂ anode using the sol-gel method was employed in electrolysis as an advanced treatment of coal chemical industry wastewater. The optimal Gd-doped content and sintering temperature were 2% and 750ºC. The electro-catalytic performance was enhanced after doping with an adequate amount of Gd. The doped Gd accelerated the generation rate and content of hydroxyl radicals in the electrolysis process. Gd was mixed into the SnO₂ lattice by means of displacement to refine the SnO₂ crystalline grain. The diminution of grain size supplied more active sites on the electrode surface. The reaction of TOC degradation was between pseudo zero-order and first-order kinetics, and was more inclined to pseudo first-order kinetics. The performance and the stability test demonstrated that the prepared Ti/Gd-SnO₂ anode was competent and that electrolysis with the anode could serve as a technically feasible method with potential application for the advanced treatment of coal chemical industry wastewater.
Since waste residues of antimony ores are piled in a disorderly way long-term, heavy metal elements of the residues are dissolved and precipitated under the eluviation effect of snow and rain, causing serious pollution to the surrounding soil. This paper takes the antimony ore of Hunan stannary as the research area, and the surrounding soil of the storage yard of antimony ores as the research object, and carries out research on the migration rules of Sb in the leachate of waste residues of antimony ores in soil by means of spot sampling, lab analysis, and test and simulation, and simulates the migration of Sb in the surrounding soil of mining areas. The results show that through the dynamic penetration experiment of indoor soil columns, the hydrodynamic dispersion coefficient (D = 2.485 cm²/h), adsorption distribution coefficient (Kd = 48.826 cm³/g), retardation factor (Rd = 78.50), and other parameters of Sb migrating in soil are obtained; the study makes use of the HYDRUS-1D model to conduct dynamic simulation of Sb in the soil nearby the antimony mine areas on the stannaries of Hunan Province, and the results indicate that the measured value is quite close to the fitted value, and in the correlation analysis of double variables, R is equal to 0.986, indicating that the simulation effect is fairly good. This study aims to provide a theoretical foundation and scientific basis for evaluating, controlling, curbing, and repairing the surrounding ecological environment of antimony mine areas.
This study collected waste rock samples during antimony mining and then probed into the releasing characteristics and regularities of heavy metals Sb and As under different factors (solid-to-liquid ratio, particle size, temperature, agitation intensity, pH value of leaching solution and leaching intensity) through indoor static soaking and dynamic leaching experiment. The results showed that: the smaller solid-to-liquid ratio, smaller particle size, or higher soaking liquid temperature could achieve the faster dissolution and precipitation rate of heavy metals; agitation could accelerate the dissolution and precipitation of heavy metals; the lower pH value could help to obtain more heavy metals deposited; the higher leaching intensity could make the rate of heavy metal reach the precipitation peak faster. Meanwhile, an equation fitting was conducted to the changing situation of Sb and As precipitation amount from antimony waste rocks with different influence factors under static and dynamic leaching, and the fitting results were good. This study was to reveal the releasing characteristics of heavy metal Sb and As in antimony mining waste rocks, so as to promote the harmonious development of metal mines.
The prediction of heavy metal pollution load at the soil-water interface of a mining area was studied through an improved soil and water assessment tool (SWAT) model. The Red Flag Mining Area of Xiangtan Manganese Mine in Hunan Province, China, was selected as the research district. GPS, ARCGIS, RS technology, and field experiments were employed in this study. A modified one-dimensional migration model was embedded in the sediment migration source module of SWAT in order to establish an Improved SWAT model for the prediction of manganese pollution load at the soil-water interface. The key pollution areas identified by the improved model were consistent with actual mine pollution, with the Nash-Sutcliffe efficiency Ens and regression R² coefficients of 0.88 and 0.91, respectively. The study would provide the theoretical foundation and scientific basis for management and repair at the site.
In this study, adsorption behaviors and mechanisms of Sb(III) ions onto Fe(III)-treated humus sludge adsorbent (FTHSA) from aqueous solutions was investigated using batch adsorption techniques, Fourier transform infrared (FT-IR) spectra and scanning electron microscopy were coupled to an energy-dispersive spectrometer (EDS). FTHSA was prepared via immersion with 1 mol/L FeCl₃. The effects of dosage, contact time, Sb(III) initial concentration, and pH on the adsorption of Sb(III) onto FTHSA were investigated. Sb(III) adsorption was favored at pH with 2.0 and decreased dramatically with increasing pH. The description of equilibrium data of Sb(III) adsorption by Langmuir, Freundlich, and Dubbin-Radushkevich isotherm models showed that Langmuir model provided the best fit for Sb(III) adsorption with maximum adsorption amount of 9.433 mg/g. Pseudo first-order, pseudo second-order, Elovich, and intraparticle diffusion model were applied to describe the adsorption process of Sb(III) ions onto FTHSA. The results showed that the pseudo second-order model described well how Sb(III) adsorption and chemical adsorption played a dominant role in the adsorption process. The FT-IR spectra also indicated that the chemical interactions as ion exchange among the metal ions and N-H, O-H, C=O, COO, and C-O were mainly involved in the adsorption process. Therefore, FTHSA has a suitable potential removal for Sb(III) ions in the practical process.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.