Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Phosphorus (P) is an essential mineral nutrient required for the plant growth and development. Insufficient P supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyze the dynamics of rice transcriptome under P starvation. Phosphorus starvation induced or suppressed transcription of 2,317 genes, representing 7.2% of the genes. These changes, mostly transient, affected various cellular metabolic pathways including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. Hundred and thirty (5.6% of 2,317 genes) transcripts were expressed similarly both in root and shoot under P starvation. Comparative analysis between rice and Arabidopsis identified 37 orthologous groups that responded to P starvation demonstrating the existence of conserved P stress coupling mechanism among dicot and monocot plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR169 under P starvation suggesting their potential roles in plant nutrient homeostasis. Analysis of genome-wide gene expression profiles in P starvation in rice shoot and root, using Affymetrix Rice Genome Chip in this paper, has provided an overview of transcriptional responses to the P starvation condition. This will bring very valuable information and will make a great contribution for investigating the response of rice to P starvation.
Static and stirred culture systems are widely used to expand hematopoietic cells, but differential culture performances are observed between these systems. We hypothesize that these differential culture outcomes are caused by the physiological responses of CD34+ hematopoietic stem and progenitor cells (HSPCs) to the different physical microenvironments created in these culture devices. To understand the genetic changes provoked by culture microenvironments, the gene expression profiling of CD34+ HSPCs grown in static and stirred culture systems was compared using SMART-PCR and cDNA arrays. The results revealed that 103 and 99 genes were significantly expressed in CD34+ cells from static and stirred systems, respectively. Of those, 91 have similar levels of expression, while 12 show differential transcription levels. These differentially expressed genes are mainly involved in anti-oxidation, DNA repair, apoptosis, and chemotactic activity. A quantitative molecular understanding of the influences of growth microenvironments on transcriptional events in CD34+ HSPCs should give new insights into optimizing culture strategies to produce hematopoietic cells.
Nitrogen (N) is one of the most important limiting factors for plant growth and development. Amino acids are the major source of organic N, which is converted from inorganic N absorbed by plant roots from the soil. Amino acid transporters are the principal mediators of organic N distribution and important regulators of resource allocation in plants. Although the complete genomic sequence of rice has already been released, there is still little known about amino acid transporter genes in rice. In this study, 79 OsAAT genes were identified by a database search of the rice genome based upon HMM profiles. A bioinformatics analysis of the complete set of OsAAT genes is presented, including chromosomal location, phylogenetic analysis, gene structure, protein analysis, conserved motifs, protein structures and cis-element analysis of the promoters. In addition, the comprehensive expression profile of OsAAT genes in rice tissues/organs under N starvation conditions was investigated by real-time PCR analysis. Diverse expression patterns of OsAAT genes indicated diverse biological functions of the amino acid transporters and the important roles of OsAAT genes in N uptake, metabolism and distribution during N starvation. The evaluation of yield and carbon (C) and N content of osaat knockout mutants also suggested the important roles of the OsAAT5, OsAAT7, OsAAT24, OsAAT49 and OsAAT60 genes in yield and biomass production and C and N metabolism and distribution in rice plants.
Treating plants with abiotic or biotic factors can lead to the establishment of a unique primed state of defense. Primed plants display enhanced defense reactions upon further challenge with environmental stressors. Here, we report that trivalent chromium (Cr(III)) pretreatment can alleviate hexavalent chromium (Cr(VI)) toxicity in 2-week-old wheat plants. The data indicate that Cr(III)- pretreated wheat displayed longer survival times and less heavy metal toxicity symptoms under Cr(VI) exposure than the control. To investigate the possible mechanism from an antioxidant defense perspective, we determined the H₂O₂ and lipid peroxide content (TBARS), the activities of antioxidant enzymes (SOD, CAT, APX and GR) and the antioxidant metabolite content (ascorbate and glutathione content, AsA/DHA and GSH/GSSG ratios) in pretreated wheat roots. The results showed that 0.5 μM Cr(III) pretreatment can alleviate oxidative damage, such as H₂O₂ and TBARS accumulation, in root tissues compared to the control during the first 3 days of Cr(VI) exposure. Furthermore, we determined that this pretreatment can significantly increase the antioxidant enzyme activities and total ascorbate and glutathione contents compared to the control treatment. In addition, redox homeostasis declined slightly in pretreated wheat compared to the control in the presence of Cr(VI). We discuss a possible mechanism for Cr(III)-mediated protection of wheat.
Although the Qinghai-Tibetan Plateau (QTP) has experienced striking warming during the past century, information on how soil carbon (C) and nitrogen (N) pools of the alpine regions on the QTP respond to long-term warming is scarce. The aims of this study were to assess the response of soil organic C (SOC), total N (TN), labile C and N – including microbial biomass C (MBC) and N (MBN), inorganic N (Ninorg), dissolved organic C (DOC), and N (DON) – to 15-year experimental warming in an alpine region (Kobresia meadow and Potentilla scrubland), on the northeastern QTP using open-top chambers (OTCs). Fifteen-year experimental warming had no effect on SOC and TN concentrations and storage at 0-30 cm soil depth, either in Kobresia meadow or Potentilla scrubland habitat, which might be related to the low temperature increase and the unchanged water content. Long-term warming obviously affected soil labile C and N and their contributions to SOC and TN, especially in the meadow habitat, but the values were low, thus the variation of the labile C and N was not enough to influence total C and N storage. The C and N pools were shown to be controlled by different controlling factors, and scrubland was more stable than the meadow ecosystem confronting the change of environment.
Adipose triglyceride lipase (ATGL) is a new key triglyceride-specific lipase that participates in the lipolysis in adipose tissue. The full cDNA of ATGL gene in Chinese francolin, pigeon, bengalessfinch and house sparrow was cloned to reveal its tissue-specific expression by mRNA real time analysis. The obtained cDNA of chinese francolin ATGL gene (cfATGL) was 1465 bp long, and contained 13 bp 5’-untranslated region (5’UTR) and 1452 bp open reading frame (ORF) encoding a 483-amino acid peptide. All the obtained cDNA of pigeon ATGL gene (pATGL), as well as that of bengaless-finch (bfATGL) and house sparrow (hsATGL) was 1459 bp long, including 13 bp 5’UTR and 1446 bp ORF encoding 481 amino acids. The identities of ATGL gene among these birds occurred no less than 88.4% by homology analysis. As indicated by mRNA real time analysis In Chinese francolin tissues, ATGL gene was predominantly expressed in leg muscle, heart and breast muscles of birds of both sexes. In pigeons, ATGL gene was shown to be predominantly expressed In abdominal fat, subcutaneous fat and breast muscle in males, and in subcutaneous fat, leg muscle,heart and abdominal fat in females. In bengaless-finch, very high ATGL mRNA level was found In subcutaneous, heart, breast muscle,abdominal and leg muscle fat in males, and in breast muscle,leg muscle, abdominal and subcutaneous fat in females. In house sparrow, higher ATGL mRNA level was detected in subcutaneous, breast muscle, leg muscle and abdominal fat in males, and in breast muscle, heart and leg muscle fat in females. In conclusion, the ATGL cDNA of Chinese francolin,pigeon, bengaless-finch and house sparrow was obtained and predominantly expressed in adipose,muscle and heart tissues.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.