Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 25

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Biological synthesis of metal nanoparticles gained worldwide interest due to their rapid, nontoxic, economical, single-step technique and eco-friendly alternative. Green-chemical approach of production of Zinc Oxide (ZnO) nanoparticles (NPs) has been exploited in the field of medicine, food packaging, nano-optical and electrical devices. Muntingia calabura is a multipotent medicinal plant with astounded biological activities and phytoconstituents. The nanoparticles obtained using aqueous extracts of various parts of M. calabura were characterized with UV-VIS spectroscopy to obtain information concerning the optical properties of synthesized ZnO nanoparticles. The proposed green and economical method could be used for large scale production of nanostructures because of its advantages over other physical and chemical methods.
Cissus vitiginea L. is a perennial climber with potent medicinal values and used in Indian traditional systems of medicines to cure wounds, diabetes, cardiovascular illness, cancers, particularly bone diseases and arthritis. This plant is kept under rare category in certain parts of India due to its imprudent harvesting from the wild. Assortment of literature on phytochemical studies of this plant shows the presence of alkaloids, flavonoids, triterpenoids, steroids, glycosides, coumarin, tannins, sugar, proteins etc. The reported secondary metabolites have been reviewed to possess immense biological activities in living systems. In the present review, we have summarized the information concerning the botanical description, phytochemistry, toxicology, pharmacology and the traditional medicinal uses of C. vitiginea. It has been concluded that this plant has not been well explored for its various biological activities and the alternate methods of propagation to increase its natural population in the wild.
Alkannin, a red-purple dye and bioactive compound found in the roots of Arnebia hispidissima has antibiotic and anti-inflammatory properties and is also used in cosmetic and textile industries at a large-scale. In the present communication, we demonstrate the establishment of callus and cell suspension culture of A. hispidissima with the aim of optimizing the production of alkannin. Highest alkannin content was recorded in cell suspension and callus culture established on M-9 medium. Production of alkannin was influenced by the different culture medium. Evaluation of alkannin content of roots of field-grown plants and in vitro grown cell, tissue and organ showed that alkannin production was higher in all in vitro grown culture systems (cell suspension, callus and roots) than the roots of fieldgrown plants. The present investigation may be applicable in designing systems for the large-scale cultivation of A. hispidissima cell suspensions for the production of alkannin.
The biogenesis of nanoparticles recently gained more attention. Here, we report the biogenesis of zinc oxide (ZnO) nanoparticles using aqueous extracts of the leaves, stem, root, flowers and fruits of Croton bonplandianum Baill. at room temperature. Croton bonplandianum is an important medicinal plant used to cure many pathological conditions in the traditional systems of Indian medicines due to the presence of important and specific bioactive compounds in the plant parts of this plant. Aqueous solution of Zinc Nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor and the various plant extracts played as reducing agents. The formation of ZnO nanoparticles was monitored by UV-Visible spectrophotometric analysis. The leaf extract showed strong absorbance peak at 302 nm, stem and fruit at 293 nm, root at 290 nm and flowers at 305 nm.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.