Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Drought tolerance in barley is highly correlated with the expression of two genes: Hordeum vulgare aleurone 1 (HVA1) and stress-responsive gene 6 (SRG6). Though their role in the mechanism of drought response in barley has been confirmed in transgenic plants, the regulation pathways of these genes’ expression have not been sufficiently studied, especially on the level of whole plants. We used four barley genotypes of different drought tolerance to establish and compare the expression profiles of SRG6 and HVA1 and to associate them with the possible physiological and biochemical signals of water deficit. Both genes studied were expressed to a greater extent in drought tolerant genotypes. The highest level of HVA1 transcript accumulation was observed under conditions where the leaf water potential decreased significantly. In tolerant genotype this signal was partially replaced with abscisic acid (ABA) signal of soil water deficit and the final transcript accumulation was about 14 times lower than in the case of leaf water deficit. In the case of SRG6 the main signal which can triggered the transcript accumulation was ABA but in the case of tolerant genotype the direct effect of leaf water deficit was also observed. Thus, it seems to be possible that in drought tolerant barley genotypes, HVA1 and SRG6, are not only more expressed during drought, but tolerant genotypes may be also more sensitive to various internal signals confirming environmental water deficit. The putative role of hydrogen peroxide as a signal of water deficit in the regulation of both genes expression was not confirmed. The drought-induced expression of both HVA1 and SRG6 was additionally reduced in the light. Because of this powerful complexity, a true understanding of plant response to drought requires further studies integrating gene expression and cell signaling analysis in single organs or tissues with whole plant physiology and long distance signaling.
The freezing tolerance of 69 accessions of field-grown, common wheat (Triticum aestivum) was assessed in three consecutive winters. To measure freezing tolerance directly, field-grown plants were subjected to a range of freezing temperatures in a controlled environment and plant regrowth was subsequently assessed. Indirect assessments of freezing tolerance, as measured by chlorophyll fluorescence transient measurements followed by a JIP-test (an in vivo measurement of the adaptive behavior of the photosynthetic apparatus), were performed on detached leaves frozen at the same time as whole plants. Both direct and indirect tests were also used on plants cold acclimated in the laboratory. These results were compared with results of a field survival study performed at seven experimental sites. An analysis of the data indicated that only some of the JIP-test parameters were suitable for the prediction of freezing tolerance and winter survival. Estimates of cold hardiness were very similar, regardless of the experimental year, but were dependent on the method of cold acclimation and time of sampling. Indirect measurements of cold hardiness were more in line with the field survival data for field-cold-acclimated plants sampled in mid-winter than for plants that were either sampled earlier or cold acclimated in the laboratory. Indirect measurements taken on leaves that had not frozen failed to provide accurate estimates of cold hardiness. Our observations, together with previously reported findings, indicate that cold acclimation under natural field conditions activates a greater array of freezing tolerance mechanisms than cold acclimation performed in under controlled environmental conditions in a laboratory.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.