It is of utmost importance in the design process that a suitable, safe and concurrently economic solution be chosen. Issues connected with foundations require adopting a special approach. Soil is a composite medium, and it is essential to describe as precisely as possible the interaction taking place between the subgrade and the structure. There are many design methods of pile foundation that are based on in-situ test of soils. As a result of incessant development of the pile installation technology, the results obtained with design methods used to date do not assure the required accuracy, and consequently the values of pile load capacity are not sufficiently accurate. A partial solution to this problem may be applying the observation method. Based on assumptions of phenomenology as a science that enable cognition of natural and mathematical phenomena, a procedure has been developed for projecting loading-settlement dependencies for Vibro piles installed in port areas in Poland. Those areas are characterised by similar soil and water conditions, as well as soil genesis and parameters. This procedure enables estimating the limit of load capacity values with much better accuracy than the hitherto used direct methods. The full range of the s(Q) function also enables the possibility of designing structures allowing for stringent criteria of admissible settlements having a specified value
The concept of offshore wind power plants has been well developed in many European countries. There is no such thing as design of offshore wind power plants according to national tradition. The main problem is the lack of standards and guidelines. Ones being applied are Scandinavian or American methods which are not fully adapted to the conditions of the Baltic Sea. The article focuses on the monopile design, as it is currently the most often used type of offshore power plants foundation. The results from analysis, according to standard wind turbine monopile design methods, were compared with the results obtained from the Kosecki’s method. The geometry analyzed in the article goes beyond the scope of defined geometrical and technological coefficients used to determine the stiffness of spring supports. The adopted stages of the analysis allowed to determine the limit of applicability of the Kosecki’s method for monopiles loaded horizontally.