Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We analyzed the influence of climatic variables on the abundance of native tree species in 1,490 sampling plots systematically distributed in the Sierra Madre Occidental (state of Durango, Northwestern Mexico, 26°50′ and 22°17′N and 107°09′ and 102°30′W). We used the Weibull distribution and the finite Gaussian mixture model to study the climatic limits of 15 tree species in relation to seven variables thought to affect species abundance. We found that although they may occur in the same geographical region, some species display a wider range of ecological tolerance than others. Of the 15 species under study, only two (Quercus magnoliifolia and Q. arizonica) can be considered generalists in relation to some climatic variables, while the other 13 species behaved as specialists, implying a narrower range of distribution. The analytical techniques used enabled us to demarcate the zones in which the probability of abundance of each species is highest in relation to the climate variables considered. The findings could be used to help define climate for the 15 studied tree species of economic and ecological interest.
Plant-plant interactions, which are defined as the effect of one plant on another of the same or different species, are inherently local in nature. Plants interact in both positive and negative ways, which are governed by the same underlying ecological dynamic processes. The Mexican endemic Picea chihuahuana Martínez is a largely untouched tree species and it is therefore an excellent model for estimating genetic potential of plant-plant interactions under natural conditions. Because of the scarce research examining plant-plant interactions at the genetic level,we tested the hypothesis that specific genetic variants of P. chihuahuana areassociated with (and likely selected by) the presence of particular neighbouring tree species. To explore this question, we applied AFLP genotyping to five P. chihuahuana populations in the State of Durango, North-western Mexico. Under the assumption that the variables genetic variant of P. chihuahuana and nearest-neighbour tree species are directly related to each other, the results show a statistically significant association between such genetic variants – at one AFLP locus in one Picea population – and two nearest-neighbour conifer species (P. chihuahuana Martínez and Pinus arizonica Engelm.). The findings indicate that interactions between genetic variants and species diversity may be crucial in shaping plant communities. However, further studies are required for a better understanding of the possible roles that such associations between genetic variants might play.
Forest succession is a fundamental ecological process, which has significant implications for the biological, biophysical, and biogeochemical processes in an ecosystem. Genetic diversity is not only a product of the number of species present in a given area, but also of successional change from colonization of gaps by pioneer species to mature climax forest. Genetic diversity should be higher in earlier successional stages than in later stages because high environmental predictability in later successional stages favours low genetic diversity. In the present study the relationship between secondary succession and genetic diversity was explored in eight stands of characteristic tree communities in the Thuringian forest area (Germany). Each of the eight stands was subdivided into six plots in a grid of 40 x 40 m to detect as much as possible tree species and genetic variants within the forest tree community and successionspecific structures. To define secondary succession, the mean Ellenberg indicator values for light and nitrogen in the herb layer, weighted for coverage, as well as the percentage of climax tree species in naturally regenerated stands were used. All species and genotype diversities based on the investigated tree species were calculated by the so-called Hill numbers. The results showed that the Gregorius´s Covariation (C) of secondary succession with the transspecific genotype diversity as well as the transspecific genotype diversity per species for the enzyme systems AAT, HEK, PGI, MDH, IDH as well as the AFLP trait was statistically significant in several relationships. The transspecific genotype diversities were often significantly greater in the earlier successional stages than in the later stages. Selection effects during replacement of light and nitrogen demanding species and plant communities by more economical and competitive species such as Abies alba Mill. and Fagus sylvatica L. probably dominated in the study. Based on the results of the study, we conclude that genetic diversity may be an essential attribute of stages of secondary succession that should be further explored because of its relation to adaptability and ecological stability.
In order to understand the environmental variables that may impact more on the distribution of species of trees and shrubs, a correlation analysis applying the Covariation (C) of Gregorius was conducted among 14 variables of climate and physiography, and the number of individuals of 72 species, which were found in 1804 sampling plots (covering about 123,317 km²) of the National Forests and Soils Inventory (INFyS) developed by the National Forest Commission in Mexico (CONAFOR). Among the studied species there are several of the genera Quercus, Pinus and Junniperus, which are mainly distributed in the Sierra Madre Occidental, where they stand out for their abundance. The results show that the density of 88% of the studied species have a significant correlation (P <0.025) with at least five of the 14 variables analyzed. Seven of the variables showed significant correlation (P <0.025) with at least 74% of the studied species: ‘Julian date of last spring frost’ with an average value of covariation (C) equal to 0.71, ‘average duration of the frost-free period’ with average value of C = 0.71’, degree days above 5℃’ with covariation of 0.69, ‘altitude above sea level’ with C = 0.66; ‘mean temperature in the coldest month’, ‘mean temperature in the warmest month’ and ‘mean annual temperature’, with average values of C = 0.65 for each of these last three variables. The ‘geographic orientation of the ground’ was the least correlated with the density of the species, since only 10% of them showed significant correlation with this variable.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.