Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 28

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
2
Content available remote

Neuropeptides in neurogenic disorders of the cardiovascular control

100%
Growing number of studies reveal that the brain neural network plays significant role in the short-term and long-term regulation of the cardiovascular functions. The neurons involved in the complex neurogenic control of the cardiovascular system use classical neurotransmitters and nonconventional mediators such as peptides (angiotensin II, vasopressin, natriuretic peptides, endothelins, opioids, cytokines), steroids, ouabaine-like factors and gaseous compounds. Among them the neuropeptides form a group of substances arising significant interest. Thanks to wide distribution of peptidergic neurons in the central nervous system, location of peptide receptors on neurons and glial cells, versatile but frequently overlapping mechanisms of activation of the intracellular processes the neuropeptides play significant role in short-term and long-term regulation of excitability and remodeling of the neurons. In several instances they modulate effects of the classical transmitting systems involved in regulation blood pressure, heart rate, water-electrolyte balance, metabolism, stress, pain, mood and memory. Prolonged activation or inhibition of specific neuropeptide pathways frequently results in long-lasting disorders of several regulatory systems. In this review this is exemplified by overactivity of angiotensin II, vasopressin and cytokines in the brain during hypertension, heart failure and stress. Multifarious actions of angiotensin II and vasopressin, and their mutual interaction with cytokines make of these neuropeptides excellent candidates for the compounds responsible for long-term resetting of the central cardiovascular control, and forming a link between the cardiovascular diseases, stress and mood disorders.
10
Content available remote

Professor Andrzej Trzebski

63%
In spite of significant progress in pharmacotherapy the incidence of newly diagnosed cases of cardiovascular diseases and cardiovascular morbidity is alarmingly high. Treatment of hypertension or heart failure still remains a serious challenge. Continuous attempts are made to identify the mechanisms that decide about susceptibility to pathogenic factors, and to determine effectiveness of a specific therapeutic approach. Coincidence of cardiovascular diseases with metabolic disorders and obesity has initiated intensive research for their common background. In the recent years increasing attention has been drawn to disproportionately greater number of depressive disorders and susceptibility to stress in patients with coronary artery disease. An opposite relationship, i.e. a greater number of sudden cardiovascular complications in patients with depression, has been also postulated. Progress in functional neuroanatomy and neurochemistry provided new information about the neural network responsible for regulation of cardiovascular functions, metabolism and emotionality in health and under pathological conditions. In this review we will focus on the role of neuromodulators and neurotransmitters engaged in regulation of the cardiovascular system, neuroendocrine and metabolic functions in health and in pathogenesis of cardiovascular diseases and obesity. Among them are classical neurotransmitters (epinephrine and norepinephrine, serotonin, GABA), classical (CRH, vasopressin, neuropeptide Y) and newly discovered (orexins, apelin, leptin IL-1ßeta, TNF-alpha, ghrelin) neuropeptides, gasotransmitters, eicozanoids, endocannabinoids, and some other compounds involved in regulation of neuroendocrine, sympatho-adrenal and parasympathetic nervous systems. Special attention is drawn to those factors which play a role in immunology and inflammatory processes. Interaction between various neurotransmitter/neuromodulatory systems which may be involved in integration of metabolic and cardiovascular functions is analyzed. The survey gives evidence for significant disturbances in release or action of the same mediators in hypertension heart failure, obesity, diabetes mellitus, metabolic syndrome, starvation, chronic stress, depression and other psychiatric disorders. With regard to the pathogenic background of the cardiovascular diseases especially valuable are the studies showing inappropriate function of angiotensin peptides, vasopressin, CRH, apelin, cytokines and orexins in chronic stress, cardiovascular and metabolic diseases. The studies surveyed in this review suggest that multiple brain mechanisms interact together sharing the same neural circuits responsible for adjustment of function of the cardiovascular system and metabolism to current needs.
Spontaneuosly hypertensive rats (SHR) have been shown to exhibit several alterations in function of the intrabrain vasopressinergic system. The present study was designed to find out whether centrally administered vasopressin (AVP) may influence the cardiovascular adaptation to hypotensive hypovolemia in SHR rats. Two series of experiments were performed on conscious 17 SHR rats chronically implanted with lateral cerebral ventricle (LCV) cannulas and with femoral artery catheters. Mean arterial pressure (MAP) and heart rate (HR) were monitored before and after arterial bleeding (1,3% body weight) performed during LCV infusion of 1) artificial cerebrospinal fluid 5µl/hour (aCSF); and 2) arginine vasopressin, 100ng/hour/5µl of aCSF (AVP). Central administration of aCSF and AVP had no effect on MAP and HR under resting conditions. Hemorrhage evoked significant hypotension (p<0.001) and bradycardia (p<0.001). During central infusion of AVP hemorrhage resulted in significantly greater hypotension than during central infusion of aCSF alone (p<0,05). The results provide evidence that centrally applied vasopressin significantly modulates cardivascular adjustments to hypotensive hemorrhage in SHR.
Increasing evidence suggests that enhanced stimulation of the heart and kidney by mineralocorticoids plays significant role in development of the post-infarct cardiac failure. Because increased synthesis of mineralocorticoid receptors (MR) is one of the putative factors determining pathogenic effects of mineralocorticoids we decided to determine whether the myocardial infarct results in an enhanced expression of MR mRNA and MR protein. To this end male Sprague-Dawley rats were subjected either to ligation of the left coronary artery or to sham surgery. After four weeks expressions of MR mRNA and MR protein were evaluated in both groups of rats in the left (LV) and right (RV) ventricle walls, and in the renal cortex and renal medulla by means of semiquantitative PCR and Western blotting methods. Coronary ligation resulted in the myocardial infarction encompassing 30.2% ± 1.9% (range 23-40%) of the left ventricle wall. In the infarcted rats expression of MR mRNA was significantly greater than in the sham-operated rats, both in the LV (P<0.02) and in the RV (P<0.005). In the left but not in the right ventricle increased MR mRNA expression was associated with significant increase in expression of MR protein (P<0.001). In the renal cortex and renal medulla MR mRNA and MR protein expression in the infarcted and the sham-operated rats did not differ. The study reveals that during the post-infarct state expression of MR mRNA is elevated in both cardiac ventricles while expression of MR mRNA protein is increased only in the left ventricle. The results suggest that the enhanced expression of mineralocorticoid receptors may contribute to enhanced effects of mineralocorticoids in the heart during the post-infarct state.
18
Content available remote

Enhanced food and water intake in renin transgenic rats

51%
In short term experiments angiotensin II (Ang II) is a potent stimulant of thirst, however it is not known whether prolonged activation of the renin-angiotensin system is associated with chronic alteration of water or food intake. Renin transgenic rats TGRmRen(2)27 (TGR) exhibit significant elevation of AngII in the brain regions involved in regulation of body fluid balance. The purpose of the present study was to find out whether TGR rats manifest also different water (WI) and food (FI) intake and renal excretory functions in comparison to their parent Sprague Dawley (SD) strain. To this end 24h WI and FI as well as urine excretion (Vu) and urinary outputs of solutes (Cosm), sodium (UNaV) and potassium (UKV) were compared under baseline conditions in 16 TGR and 15 SD rats having free access to water and food. In 15 TGR and 17 SD rats effect of 24h dehydration on water intake was investigated. Under baseline conditions TGR rats consumed significantly greater amount of food and water than SD rats. Vu, UNaV and UKV were not significantly different in both strains. Cumulative water intakes in SD and TGR rats subjected to 24h dehydration did not differ. The results reveal that under baseline conditions TGR rats manifest greater food and water intakes than SD rats whereas stimulation of thirst by water deprivation is similar in both strains. The results suggest that the ingestive behavior may be chronically altered by upregulation of the renin-angiotensin system.
Previous studies revealed that the brain angiotensinergic, vasopressinergic and nitrergic systems are involved in regulation of blood pressure and that their function is altered in various forms of hypertension. The purpose of our investigation was to determine whether expression of AT1a angiotensin receptors (AT1aR) mRNA, V1a vasopressin receptors (V1aR) mRNA and neuronal nitric oxide synthase (NOS1) mRNA is altered in the brain of rats with the renovascular hypertension. Eight male Sprague Dawley (SD 2K,1C) rats were subjected to constriction of the left renal artery in order to produce the renovascular hypertension whereas nine SD rats underwent the sham surgery. In both groups blood pressure was determined before and after the surgery. Four weeks after the surgery the brain fragments were harvested for determination of mRNA expression. Competitive PCR method was applied for relative quantitative analysis of V1aR mRNA, AT1aR mRNA and NOS1 mRNA in the preoptic, diencephalic, mesencephalopontine, medullary and cerebellar fragments of the brain. Blood pressure was significantly higher in the 2K,1C than in the sham operated rats. In the preoptic, mesencephalopontine and medullary regions AT1aR mRNA expression was significantly lower in the 2K,1C rats than in the sham operated rats. The 2K,1C rats manifested also significantly higher expression of V1aR mRNA and NOS1 mRNA in the preoptic brain region in comparison to the sham operated rats. The study provides evidence for significant changes of expression of AT1aR mRNA, V1aR mRNA and NOS1 mRNA in the specific brain regions of rats with the renovascular hypertension.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.