Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
With the gradual increase of the thermal power unit capacity, the inlet steam parameters and flow of the turbine also increase gradually, which causes considerable secondary flow loss. Therefore, studying the causes and distribution of secondary flow loss within the level is of great significance to effectively improve the stage internal efficiency of turbine. Take high-pressure stage moving blade of a turbine as the research object, and adopt the k-ωSST model, the SIMPLEC algorithm to numerically simulate the formation and development process of leakage vortex between the tip clearance of the positive bending twisted blade and its effect on the secondary flow of cascade passage. Results show that relative to the conventional twisted blade, the scope of influence of leakage vortex which the steam flow formed near the suction surface of positive bending twisted blade and the disturbance to passage mainstream become smaller, and the increase of tip clearance has weakened the „C” type pressure gradient of suction surface of the positive bending twisted blade, increased the thickness of the boundary layer at both ends of blades and the loss of the blade end
Based on basic equation and boundary layer theory of pneumodynamics, the thesis conducts numerical modeling and theoretical analysis on the last stage of turbine characteristics at a small volume flow by using FLUENT, gives an emphasized analysis on the position of first occurrence of backflow and its expansion direction and comes up with flow structure of the turbine flow field at last stage in the small volume flow condition. In connection with specific experiments, it puts forward the flow model of backflow occurring in the last stage field and the solution to the model. The flow field at last stage for a 100MW turbine in the small volume flow condition that is calculated by using the model is basically in conformity to the actual result
Perennial ryegrass is an important turf grass and also used as a forage plant. However, abiotic stresses such as salt and drought are main limitations to its cultivation. In the present work, we cloned the gene encoding pyrroline-5-carboxylate synthetase (P5CS) from Lolium perenne, which is responsible for proline biosynthesis. This gene had a coding sequence (CDS) of 2151 base pairs (bp) encoding 716 amino acids. Multi-alignment analyses showed that the putative Lolium perenne P5CS (LpP5CS) contain all conserved functional sites and regions, and also displayed considerable similarities to Triticum astevum P5CS (TaP5CS) and Oryza sativa P5CSs (OsP5CSs). The real-time polymerase chain reaction (PCR) showed that the LpP5CS was highly expressed in leaves than in other tissues under normal conditions, and induced by sodium chloride (NaCl), abscisic acid (ABA), polyethylene glycol and cold treatments. Furthermore, ectopic expression of LpP5CS led to proline accumulation in tobacco under normal conditions. The transgenic tobacco over-expressing LpP5CS exhibited stronger tolerance to salt and drought as compared to control. These results showed, that LpP5CS responds to stress signals involving salt, drought, cold and ABA in perennial ryegrass. Our data indicate that LpP5CS might be a candidate gene for stressassociated molecular breeding in perennial ryegrass.
Magnolia cylindrica Wils. is one of the third most-protected wild plants in China. To describe the size structure and dynamics of its population, field data were obtained from eight newly established sites, using a contiguous grid quadrate method in Jiulong Mountain of East China. The population size structure and spatial distribution pattern were discussed based on a theoretical distribution model and assembling intensity index. The population size structure showed a declining trend because of the lack of seedlings. The number of stump-sprouting, size class III (sapling trees) individuals was large enough to make up for the shortage of small seedlings and the complete regeneration of populations through sprouting. The distributions of M. cylindrica, both seedling populations (Group A) and overall populations (Group B), were mostly clumped. The spatial pattern intensities of the populations at different stages (mainly small trees, middle trees, and big trees) were higher for Group A than those for Group B. The two groups have the same tendency in that the pattern intensity declined from small trees to the larger ones. Group A and Group B differed in spatial pattern: small and middle trees were randomly distributed in seedling populations, but aggregated in overall populations. The populations of M. cylindrica (both group A and B) were characterized by the pattern scale between 16 to 32 m2, measured by Greig-Smith and Kershaw methods. These results suggest that sprouting should be seriously considered in population rehabilitation and forest tending management and the area of forest tending management should be close to the maximum intensity.
There is significant genetic diversity within a species in terms of nitrogen utilization efficiency (NUtE), and genotypes with higher NUtE can help reduce nitrogen (N) fertilization rates and therefore mitigate ecological problems. Determining various characteristic differences in the NUtE of crops is helpful for dissecting the mechanisms of N use efficiency within crop species. In this study, a pot experiment, as well as a hydroponic experiment, was conducted to investigate the differences in oilseed rape biomass, N nutrition traits, N metabolism enzyme activity, root exudates and root RNA expression levels at the vegetative stage between the high and low NUtE genotypes. NUtE was negatively correlated with leaf SPAD values (− 0.341**), N accumulation (− 0.362*) and total biomass (− 0.395**), while there was no significant correlation between NUtE and N content (− 0.150 ns). The root biomass; primary root length and root activity; root N content and accumulation; transpiration rate, and stomatal conductance; root nitrate reductase, glutamine synthetase, and glutamate synthetase activity; the number of alkanes; expression levels of BnNRT1.1 and BnNRT2.1 of the low NUtE genotypes were higher than those of the high NUtE ones. It was concluded that during the vegetative growth stage, compared with the high NUtE oilseed genotypes, low NUtE oilseed genotypes demonstrate higher physiological activity or stronger growth potency at the vegetative growth stage.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.