The 3 members of the mammalian trefoil factor family (TFF) are expressed and secreted as cytoprotective peptides along the entire length of the normal gastrointestinal tract. More recently, they were shown to display multifunctional properties. Goblet cells of the small and large intestine constitute a major source for the synthesis of the third family member, TFF3 (formerly intestinal trefoil factor, ITF). TFF3, like the other family members, is rapidly up-regulated in response to physical wounding of the digestive tract. In addition, Tff3 was also detected in the posterior pituitary gland. Apart from this Tff3 function as a neuropeptide, also presence of Tff3 in the mouse cochlea was noted and Tff3-deficient animals display hearing impairment and accelerated presbyacusis. To elucidate Tff3’s mode of function and its unexpected contribution to the hearing process, we strived to determine Tff3’s interacting partners and to establish the functional network. To this end, we used a protein-protein binding assay based on a specific transcriptional regulation in yeast cells (the yeast-two-hybrid assay). We looked for interacting partners of Tff3 in a mouse cochlea cDNA library (from donors aged 3-15 days, P3-P15). Our data show that several binding candidates exist and that they could contribute to the known involvement of the trefoil peptides to apoptosis.