The effect of copper stress on betacyanin accumulation and guaiacol peroxidase (GPOD) activity in leaves of different age was evaluated in red beet (Beta vulgaris L. var. Crosby Egyptian) plants. In hydroponic culture, plants were treated with 0.3 μM (control), 50 μM, 100 μM, and 250 μM of CuSO4 for 6 days. Copper was taken up and accumulated in old roots but was not translocated to leaves. However in young leaves, the increase of lipid peroxidation and reduction of growth were evident from day 3 of copper exposure; whereas in old leaves, the lipid peroxidation and growth were the same from either copper-treated or control plants. In response to copper exposure, the betacyanin accumulation was evident in young leaves by day 3, and continued to increase until day 6. Betacyanin only were accumulated in old leaves until day 6, but the contents were from 4 to 5 times lower than those observed in young leaves at the same copper concentrations. GPOD activity increased 3.3- and 1.4-fold in young and old leaves from day 3 of copper treatment respectively, but only in the young leaves was sustained at the same level until day 6. Old roots shown betacyanin in the control plants, but the betacyanin level and growth were reduced with the copper exposure. In contrast, young roots emerged by copper effect also accumulated copper and showed the highest betacyanin content of all plant parts assayed. These results indicate that betacyanin accumulation and GPOD activity are defense responses to copper stress in actively growing organs.
This study presents a protocol for the establishment of Prosopis laevigata cell suspension culture as a strategy to obtain an in vitro mesquite gum productive cell line. The callus used for this purpose was obtained with hypocotyls from 15-day-old plantlets, placed on Murashige–Skoog medium with two different plant growth regulators (PGRs), 2,4,5-trichlorophenoxy acetic acid (2,4,5-T; 5.0 µM) and kinetin (KIN; 5.0 µM). With this PGRs treatment, after four subcultures (30 days each) an exuded gum-like substance was observed on the callus surface. The growth kinetics of the cell suspension culture showed a specific cell growth rate (µ) of 0.14 d⁻¹ and doubling time (td) of 6.6 days, respectively. The gum-like substance from callus culture and the broth from cell suspension culture were subjected to chemical analysis and compared with the mesquite gum exuded from wild trees. Both, gum-like substance from callus culture and the broth from cell suspension culture showed the presence of Arabinogalactanproteins, and their polysaccharide fraction presented the same monosaccharides as those isolated from mesquite gum. In addition, the emulsifying properties of gum-like substance from callus culture and the broth from cell suspension culture were compared to those of mesquite gum and all three samples exhibited similar emulsifying capacity and emulsification stability.
The aim of this study was to determine if the increase of the initial sucrose concentration (ISC) improves cell growth and arabinogalactan protein (AGP) secretion of Beta vulgaris L. cultures. ISC tested were 43.8, 87.6 and 131.4 mM. Cell growth and specific growth rate were improved increasing the ISC. Cell cultures grown with ISC 43.8 mM were fed with sucrose, and cellular growth was enhanced twofold, revealing the stimulatory effect of sucrose on cell growth. The AGP secretion was stimulated, increasing the ISC. This event was partially associated with the exponential growth phase of the culture. AGP precipitation with Yariv reagent of cell cultures inhibited cell growth without changes in viability. The assay of sucrose feeding confirmed the relationship between cell growth and AGP secretion. These observations suggest that AGPs may be required for cell division. The increase of AGP secretion by ISC coincided with a higher cellular aggregation, suggesting a possible role of AGP as cellular adhesion molecules. To determine whether AGP secretion is also stimulated by an osmotic effect, mannitol was fed to raise the osmotic potential from 23.78 to 95.97 mOsm kg⁻¹. Mannitol was not used for cell growth, but AGP secretion was stimulated sixfold in relation to the control. These results are important for understanding the possible factors involved in the AGP secretion of plant cell culture and that may be considered to improve the AGP production.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.