Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The effect of salinity on cell turgor, plasma membrane permeability and cell wall elasticity has been measured in petioles of an aspen hybrid using the cell pressure probe. Control plants were grown in soil without the addition of NaCl and treated plants were grown in soil with 50 mM of NaCl for 1, 2, 3 and 4 weeks. In parenchyma cells from Populus tremula × tremuloides petioles with an increased level of NaCl in the soil: (a) turgor pressure was reduced after 1 week of treatment but afterward it was similar to untreated plants, (b) the value of elastic modulus of the cell walls increased, and (c) hydraulic conductivity of the plasma membrane of treated plants decreased in comparison to untreated ones. No histological differences and distribution of JIM5 antibody between the petioles of plants grown under salinity and the untreated were found. In cell walls of parenchyma and collenchyma from plants grown under salinity, the presence of pectic epitopes recognized by JIM7 antibodies was increased in comparison to the control plants. The obtained results indicate that under salt stress the permeability of water through plasma membrane is disturbed, cell walls became more rigid but the turgor pressure did not change.
A study was carried out on the leaf abscission zone from birch trees growing on polluted sites (two) and a non-polluted site (one). Samples for anatomical investigation were collected from six trees on each site, during three succeeding vegetation seasons. It was observed that in trees growing at the polluted sites: 1) maturation of the abscission zone was faster, 2) the protective layer was thinner and 3) the formation of leaf scar periderm was delayed in comparison with trees from the non-polluted site. The results obtained suggest that environmental pollution influences the formation of the abscission zone and the protection of the leaf scar.
Ectomycorrhizas of Scots pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) were sampled in a mature forest ecosystem exposed for more than 40 years to moderate levels of gaseous and dust pollutants. Soil of the forest site was characterised by low pH and accumulation of heavy metals (Pb, Mn, Zn, Cu, Cd, Fe). Mycorrhizal vitality and enzyme activity of the root-surface and soil acid phosphatase (AcPase) were studied at 17 measurement points (0–5 cm soil depth) in relation to the content of inorganic phosphate (Pi) and aluminium ions (Al3+) in the soil. Anatomy of Scots pine and beech mycorrhizas taken from different measurement points was observed. The concentration of essential nutrients (C, N, P, Ca, Mg) and the ratios Ca/Al, Mg/Al and N/P were analysed in fine roots. High concentrations of Al3+ in the soil (40–118 meq kg-1) and low levels of Pi (12–44 mg P2O5 kg-1) were accompanied by high activity of the root-surface AcPase of pine and beech mycorrhizas (25–67 and 33–86 μmol pNP g-1 fresh weight h-1, respectively) and soil AcPase (6.8–22.4 μmol pNP g-1 dry weight h-1). The results indicate that fine tree roots are undoubtedly under stress as evidenced by a disturbance in P uptake and accumulation. However, the high vitality of mycorrhizas and the high Ca/Al ratio in fine roots suggest that the defence mechanisms of mycorrhizas and the rhizosphere are still able to ameliorate the influence of anthropogenic pollution.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.