Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Although study of the toxicity of metallic nanoparticles in aquatic organisms is increasing, there is still little known about their combined toxicity, especially in a comparative and integrated approach. The objective of this study is to compare the toxicity of copper nanoparticles (CuNP), chromium nanoparticles (CrNP), and their mixtures to crucian carp (Carassius auratus) through a comprehensive approach. A high median lethal concentration of CuNP (390.75 mg/L) and CrNP (551.03 mg/L) was calculated from the acute toxicity, indicative of low toxicity to crucian carp. After exposure for 10 d at sublethal concentrations, several biomarker responses, including the activities of brain acetylcholinesterase (AChE), gill sodium/ potassium-activated ATP (Na⁺/K⁺ -ATP), liver superoxide dismutase (SOD), and catalase (CAT) were significantly inhibited by all nanoparticles in most cases, implying the neurotoxicity, osmoregulatory toxicity, and oxidative damage of metallic nanoparticles. Thereafter, the integrated biomarker response version 2 (IBRv2) integrating all biomarker responses was applied to compare the toxicity, and therefore the toxicity order was tentatively proposed as: the mixtures ≈ CuNP>CrNP, suggesting a synergistic effect in the mixtures. The findings will help to understand the ecological impacts of metallic nanoparticles in an aquatic environment in a more complete and accurate picture.
This study investigated the concentrations of 11 metals in soils sampled in 1994 and 2014 from 17 cities throughout Anhui Province in China. Among the tested metals, Mn had the highest concentration and Hg the lowest. In the past 20 years, soil Cd, Co, Mn, and Cu concentrations demonstrated an increasing trend. In 1994, only Tongling City had a total metal concentration over 1,000 mg/kg, but in 2014, the seriously polluted cities also included Bengbu, Chizhou, Fuyang, Huannai, Huangshan, and Maanshan. Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the soil environment quality of 17 cities. Environmental quality was determined to be Class I (excellent) or Class II (good) for each soil with single-factor index method, and most was identified as Class I for soils with the comprehensive index model. Different from the single-factor index method, the comprehensive index model concerned both the predominant index and average contribution of all pollution indices to integrated environmental quality. Using each of the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be Class I. However, divergence of the membership degree to each pollution class still occurred between the two methods. For fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.
We investigated the biosorption characteristics of thallium (I) ions using dead biomass of Pseudomonas fluorescens strains as biosorbents. The biosorbents were characterized by Fourier transform infrared spectroscopy (FT-IR) and a scanning electron microscope (SEM). The effects of different environmental factors such as initial Tl concentration, initial solution pH, biomass dosage, and contact time were evaluated. The maximum adsorption capacity was found to be 93.76 mg/g at an optimum initial pH of 5.0, a contact time of 60 min, a biomass of 0.5 g/L, and an initial Tl concentration of 50 μg/mL. The biosorption process can be well defined by the Langmuir isotherm (R²= 0.9967). The biosorption kinetics were better described by the pseudo second-order model (R²= 0.9950) than the pseudo first-order one. The analysis of (FT-IR) indicates that the main functional groups responsible for adsorption of Tl (I) were hydroxyl, carboxyl, and amino groups. SEM analysis verifies an obvious surface morphology change of adsorbed biomass. The results presented in this study show that the Pseudomonas fluorescens could be an effective, low-cost, and environmentally friendly biosorbent for removing Tl (I) from aqueous solution.
Chlorophyll a fluorescence transient can reveal the degree of thermal damage to plant photosynthetic organs and provide much physiological information about PSII fleetly. However, it is not clear how it reveals photosynthetic mechanisms of plants under decreasing soil moisture. In this paper, the photosynthesis characteristics and photosystem II (PSII) activities in leaves of Lonicera japonica under 11-level soil moisture were explored by gas-exchange analysis and JIP test. Both parameters of net photosynthetic rate (Pn) and water use efficiency (WUE) exhibited an increasing–decreasing trend with the decreasing relative soil water content (RSWC). At 29.7% ≤ RSWC≤ 79.6%, the main reason for Pn decrease was stomatal limitation; at 36.4% ≤ RSWC≤ 55.1%, both Pn and WUE were higher than the average. When RSWC was below 29.7%, Pn, Tr, and WUE significantly decreased. Meanwhile, a JIP-test analysis revealed a distinct K peak with decreases in the quantum yield and energy distribution ratio (ψo or φEo) and increases in the K phase (Wk) and J phase (Vj) at RSWC≤ 29.7%, indicating that severe drought (RSWC≤ 29.7%) damaged the leaf oxygen-evolving complex, caused the accumulation of Q −A in PSII electron acceptors, and, therefore, hindered the progression of the PSII electron transport chain. In addition, at RSWC≤ 29.7%, the absorption flux per CS (ABS/CSo) increased, while the phenomenological energy fluxes for TRo/CSo, ETo/CSo, RC/CSo decreased, indicating that the PSII reaction center was damaged and excessive light energy was accumulated. Therefore, the main reason for the decrease of photosynthetic efficiency was non-stomatal limitation at RSWC≤ 29.7%, and the maximum moisture deficit for the growth of Lonicera japonica is RSWC= 29.7%.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.