Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Response of tea plants (Camellia sinensis (L.) O. Kontze) to Al (300 μM AlCl3 for 14 weeks) was studied in combination with deficient (-B) or adequate B supply (?B) in hydroponics. Aluminum improved plant growth under B deficiency. This positive Al effect in (-B) plants was related to an Al-induced increase of B contents in the root cell walls (CW). Moreover, in (-B) plants more Al was partitioned into CW-bound fractions in both leaves and roots than in (+B) plants; an indication that B deficiency reduced the mobility of Al in the tea plants. In general, the highest activities of phenylalanine ammonia lyase, polyphenol oxidase, and soluble and CW-bound fractions of peroxidases were observed in (+Al/-B) plants. In (-B) plants Al supply caused a reduction of CW-bound phenolic acids and lignin, while the concentrations of soluble phenolics increased in the leaves. In the roots, however, Al treatment of B-deficient plants caused a significant increase of CW-bound phenolic acids, but not of lignin. Our results suggest that increased B partitioning into CW and reduction of lignification were important causes for Al-mediated amelioration of growth in B-deficient plants. In addition, the observation that in (+Al/-B) roots CW binding of both Al and phenolic acids was enhanced indicates that in the B-deficient roots Al was mainly bound to the CW phenolic acids; this, in turn, reduced their availability for enzymatic reactions and lignin synthesis.
Boron (B) re-translocation is an important factor determining tolerance to B deficiency in plants. In this work growth, B content of leaves with different ages, B partitioning between soluble and cell wall (CW) fractions, and B re-translocation were investigated in tea (Camellia sinensis (L.) O. Kuntze) plants grown hydroponically without (\2.5 μM) and with adequate (46 μM) B supply. Under B deficiency, the proportion of CW bound B increased in the old leaves but decreased in roots. Contrastingly, the proportion of CW bound B was not influenced by B supply in the young leaves. A continuous reduction of B content was observed in all fully expanded leaves as well as in roots of low B plants. Taken together, these results revealed considerable re-translocation of B from mature to growing leaves. Leaf extract and phloem exudate samples were analyzed and sucrose, glucose, and fructose were detected while xylitol, sorbitol, mannitol, maltose, galactose, cellobiose or rafinose were not found in these samples. In the leaf extracts, concentration of sucrose increased under B deficiency conditions, concentration of glucose decreased, while that of fructose remained unchanged. Our results provide circumstantial evidence for a considerable re-translocation of B in tea plants despite lacking polyol compounds.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.