Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background: This study presents the evaluation of the damage in the bone tissue resulting from a calvarial defect in rats and the efficiency of exposure to an ozone application with an alloplastic bone graft on the calvarial bone damage. Materials and methods: Wistar male rats (n = 56) were divided into four groups: a control group (n = 14), defect and ozone group (n = 14), defect and graft group (n = 14), and defect, graft, and ozone group (n = 14). Under anaesthesia, a circular full-thickness bone defect was created in all groups, and the experimental groups were further divided into two sub-groups, with 7 rats in each group sacrificed at the end of the 4th and 8th weeks. Bone samples were dissected, fixed in 10% formalin solution, and decalcified with 5% ethylene-diamine-tetraacetic acid (EDTA). After the routine follow-up on tissues, immunostaining of osteopontin and osteonectin antibodies was applied to sections and observed under a light microscope. Results: The control group exhibited osteopontin and osteonectin expression in fibroblasts and inflammatory cells at the end of the 4th week with an acceleration at the 8th week. Ozone administration elucidated new trabecular bone formation by increasing osteoblastic activity. Lastly, our observations underscore that a combination of allograft and ozone application increased the osteoblast, osteocyte, and bone matrix development at the 4th and 8th weeks. Conclusions: Exposure to an ozone application with an alloplastic bone graft on calvarial bone damage may induce osteoblastic activity, matrix development, mature bone cell formation, and new bone formation in rats. (Folia Morphol 2020; 79, 3: 528–547)
Background: Nicotine is associated with increased incidence of periodontal disease and poor response to therapy. This article aimed at identifying the expression of matrix metalloproteinases 2 (MMPs2) and vascular endothelial growth factor (VEGF) proteins on extracellular matrix, fibrous distribution and angiogenetic development in periodontitis caused by nicotine effects on periodontal membrane. Materials and methods: In this experimental study, rats were divided into nicotine and control groups. While the rats in the nicotine group (n = 6) were administered 2 mg/kg nicotine sulphate for 28 days, the animals in the control group (n = 6) were only administered 1.5 mL physiologic saline solution subcutaneously for 28 days. Results: Histological sections were prepared and immunohistochemically stained for MMP2 and VEGF. The sections stained with Trichrome-Masson were observed under light microscope. VEGF and MMP2 immunoreactivity of periodontal gingiva and dentin was assessed by immunohistochemical staining. Conclusions: Nicotine reduces MMP production, disrupts collagen synthesis and causes periodontitis. We observed that nicotine increases periodontitis by disrupting periodontal membrane and prevents tooth to anchor in dental alveoli by disrupting epithelial structure. (Folia Morphol 2018; 77, 3: 471–477)
Background: The objective of this study was to investigate whether long term formaldehyde inhalation may affect periodontal membrane and alveolar bone loss leading to periodontitis. The negative effects of formaldehyde were described using vascular endothelial growth factor (VEGF), matrix metallopeptidase 2 (MMP-2) and osteonectin antibodies involved in the extracellular matrix and angiogenetic development. Materials and methods: Thirty adult Wistar albino rats were used in this study. Rats were divided into two groups: a control group (n = 15) and formaldehyde administered group (n = 15). Formaldehyde group was exposed to inhalation of 10 ppm formaldehyde 8 hours a day, 5 days a week for 5 weeks. Maxillary bone regions were dissected under anaesthesia. After fixation in 10% formaldehyde solution, tissues were passed through graded ethanol series to obtain paraffin blocks. Five-micrometre histological sections were cut with RM2265 rotary microtome stained with Masson trichrome and VEGF, MMP-2 and osteonectin antibodies for examination under Olympus BH-2 light microscopy. Results: The present study revealed that congestion in blood vessels, degeneration of collagen fibres and alveolar matrix around alveolar bone were observed to be more significant in formaldehyde group than the control group (p ≤ 0.001). Interestingly, VEGF expression in the formaldehyde group was the most significant finding between the two groups (p < 0.001). When compared inflammation, MMP-2 and osteonectin expressions were significant (p < 0.01) in the formaldehyde group. Conclusions: It was suggested that formaldehyde toxicity decreased the expression of MMP-2 and in osteoblasts as well as affecting the retention of MMP levels in tooth cavity, which is very low in collagen fibres. But, vice versa for the expression of VEGF in dilated vascular endothelial cells and osteocytes in alveolar bone. As a conclusion, formaldehyde disrupts the periodontal membrane and may cause collagen fibres degeneration by affecting the alveolar bone matrix. (Folia Morphol 2019; 78, 3: 545–553)
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.