Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This study investigated the distribution and chemical coding of neurons in intramural ganglia of the urinary bladder trigone (UBT-IG) and cervix (UBC-IG) in the male pig using combined retrograde tracing and double-labelling immunohistochemistry. Additionally, immunoblotting was used to confirm the presence of marker enzymes for main populations of autonomic neurons. Retrograde fluorescent tracer Fast Blue (FB) was injected into the wall of both the left and right side of the bladder trigone, cervix and apex during laparotomy performed under thiopental anaesthesia. Twelve μm-thick cryostat sections were processed for double-labelling immunofluorescence with antibodies against tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), substance P (SP) and vesicular acetylcholine transporter (VAChT). UBT-IG and UBC-IG neurons in both parts of the organ formed characteristic clusters (from few to tens of neuronal cells) found under visceral peritoneum or in the outer muscular layer. Immunohistochemistry revealed several subpopulations in UBT-IG and UBC-IG neurons, namely noradrenergic (ca. 76% and 76%), cholinergic (ca. 22% and 20%), non-adrenergic/non-cholinergic nerve cells (ca. 1.5% and 3.8%), NPY- (ca. 66% and 58%), SOM- (ca. 39% and 39 %), VIP- (ca. 5% and 0%) and NOS- immunoreactive (IR) (ca. 1.5% and 3.8%), respectively. Immunoblotting using antibodies to TH and VAChT showed the presence of studied proteins as revealed by the presence of protein bands of the correct molecular weight. This study has revealed a relatively large population of differently coded UBT- and UBC- IG neurons, which constitute an important element of the complex neuroendocrine system involved in the regulation of the male urogenital organs function.
This study was aimed, by means of the retrograde tracing technique, at disclosing the distribution of efferent neurones innervating the porcine oviduct. The fluorescent retrograde tracer Fast Blue was injected into the wall of the right oviduct in six juvenile pigs during laparotomy performed under anaesthesia. After a recovery period of 3 weeks the animals were reanaesthetised, perfused with 4% buffered paraformaldehyde (pH 7.4) and different ganglia, thought to be potent sources of the efferent innervation, were collected. The occurrence and distribution of Fast Blue-positive neurones were studied in the sympathetic chain and prevertebral ganglia, including the coeliac-superior mesenteric ganglion complex, adrenal ganglion, aorticorenal ganglion, ovarian ganglion and inferior mesenteric ganglion. The labelled neurones were found only in the right, ipsilateral ganglia. The largest number of Fast Blue-positive neurones was found in the inferior mesenteric ganglion, ovarian ganglion and in the coeliac-superior mesenteric ganglion complex. In the inferior mesenteric ganglion, the Fast Blue-positive neurones showed a tendency to gather in the dorso-cranial and the dorsocaudal region of the ganglion, forming two discrete ”oviductal centres”. The aortico-renal and adrenal ganglion contained a smaller population of Fast Bluepositive nerve cell bodies. The smallest number of Fast Blue-positive neurones was found in the sympathetic chain ganglia (T₁₄-L5). The localisation of Fast Blue-positive neurones in the sympathetic chain ganglia and prevertebral ganglia suggests that these nerve structures play a fundamental role in the efferent innervation of the porcine oviduct.
In the present study the ELISA test was used to investigate the influence of chemically-induced ileitis on the dorsal root ganglia (DRG) neurons in the pig. The preliminary retrograde fluorescent tracing study revealed that ileum-projecting sensory neurones (IPN) are located in the thoracic ganglia (Th; Th₈–Th₁₃). The ileum wall in experimental (E) pigs was subjected to multiple injection with 4% paraformaldehyde to induce inflammation, while in the control (C) animals the organ was injected with 0.1 M phosphate buffer. Three days later the DRGs (Th₈–Th₁₃) collected from all the animals were evaluated for VIP, SP, CGRP, NPY, GAL and SOM content with an ELISA test. It was found that the inflammation increased clearly the tissue level of SP, GAL and SOM.
This study investigated the influence of active immunisation against Gn-RH on adrenergic innervation of the porcine testis, epididymis and vas deferens. Seven groups of the boars were used including three control groups (n=9) Gl, G2 and G3 consisting of non-immunised animals aged 10,18 and 26 weeks, respectively, and four groups of immunised pigs (7-9 animals in each group). All the experimental boars (G4-G7) were immunised at the age of 10 weeks. Then, the animals from the two groups (G6, G7) were immunised again at age of 18 weeks. The vasa deferentia from the immunised pigs were collected at the age of 18 weeks (G4, immunised once) and at the age of 26 weeks (G5, immunised once, and two groups, G 6 and G7, immunised twice). Immunisation was accomplished by vaccination with GnRH using vaccine obtained from Peptech Animal Health, Australia. Tissue concentrations of noradrenaline (NA) were determined using high performance liquid chromatography (HPLC), and double-immunolabellings for PGP 9.5, SNAP-25 and DßH were also performed. Immunohistochemistry revealed numerous PGP- or SNAP-25-positive (+) nerve fibres supplying the organs. The vast majority of them contained also DßH. The study revealed a gradual age-dependent decrease in NA tissue concentration and a density of PGP 9.5+, SNAP-25+ and DßH+ innervation of the testis and epididymis in the control animals (G1-G3). However, in the effectively immunised animals (especially in the boars of G7 immunised twice), both NA tissue concentration and the density of the innervation were significantly higher than those found in the animals of the corresponding control groups. With regard to the vas deferens, no distinct differences in both NA tissue concentration and in a density of the innervation between the particular animal groups including those consisting of the control and immunised boars were observed. The results obtained strongly confirm previous suggestions on the existence of an inverse relationship between the nervous and hormonal systems at the level of the porcine testis.
The present study investigated the chemical coding of neurons in the celiac-superior mesenteric ganglion complex supplying the normal (n = 4) and inflamed (n=4) ileum (chemically-in- duced inflammation) in juvenile pigs using retrograde tracing combined with immunohistochem- istry. Ileum-projecting neurons (IPN) were predominantly distributed in the left and right superior mesenteric pools of the ganglion. The majority of them were adrenergic (tyrosine hydroxylase-positive) and also contained neuropeptide Y, somatostatin or galanin. No clear-cut differences in the distribution and chemical coding of IPN were found between normal and inflamed pigs. However, in the inflamed group, the density of peptidergic, IPN-associated nerve fibres was higher than that found in the control group.
The expression of galanin (GAL) and its three receptors (GalR1, GalR2, and GalR3) were studied with real-time PCR in the colonic wall of pigs suffering from experimental colitis caused by the infection with Brachyspira hyodysenteriae. The expression was studied in the muscular membrane, mucosa/submucosa layer, and in lymphocytes isolated from mucosa/submucosa. The expression levels were normalized to glyceraldehyde-6-phosphate dehydrogenase (GAPDH) expression and compared to expression levels in control animals. GAL expression was found in all three studied compartments of the colonic wall. A significant decrease in GAL expression level was found in the mucosa/submucosa and in isolated lymphocytes, whereas the decrease was much less profound in the muscular membrane. In the case of galanin receptors their expression was found in all studied compartments of the colonic wall, however at different levels, as compared to GAPDH expression. The decrease of galanin receptors expression was found in all studied compartments of the colonic wall of the sick animals.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.