PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 13 |

Tytuł artykułu

Inhibition of seed germination by far red radiation transmitted through leaf canopies

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Perception of light by phytochrome is one of the mechanisms that enable seeds to optimize the place and time of germination. In an effort to determine how widespread in nature is the inhibition of seed germination by light transmitted by competing plants, the seeds of various species were exposed for germination beneath leaf canopies. A high ratio of far red (FR) to red (R) light under the canopies inhibited to various extent the germination in most of samples. Only 91 species (out of 487 tested) did not indicate any FR-inhibition and might be determined as truly light-insensitive. Although particular seed samples of the same species often differ in response to white light (photoblastism), the responses to the FR irradiation seem to be much more stable. The ability to the FR-dormancy may be treated as a species-specific feature. After several-day exposure under leaf canopy, the seeds become extremely sensitive to the white light, but this sensitivity diminishes slowly in the course of treatment. Every seed cohort may be diversifi ed in germination by the irregular and variable structure of leaf canopy. The acquired state of photosensitivity may persist during several years and may impact on seed longevity. The seeds needing winter prechilling (stratifi cation) for a substantial germination, often become more indifferent to the white light, but always show a FR-sensitivity. The relations between taxonomic position and FR-sensitivity are weak. No difference in the FR-sensitivity was observed among life-forms. Distinct relations were stated between seed size and FR-sensitivity; seeds of FR-insensitive species are in average much larger. A relationship was found between the dynamics of germination and the photoresponses. Positively photoblastic and FR-sensitive seeds usually need much more time to full germination. These relationships may explain the fact that often the seeds of cultivated plants are photoblastically indifferent and FR-insensitive; they have been selected for fast and uniform germination. Full daylight exerted usually an inhibitory effect on germination of seeds of almost all tested species. The concept of positive photoblastism ought be treated with caution, because it proves true only in weak light.

Słowa kluczowe

Wydawca

-

Rocznik

Numer

13

Opis fizyczny

s.10-38,rys.,bibliogr.

Twórcy

autor
  • Institute of Soil Science and Plant Cultivation, National Research Institute , ul.Czartoryskich 8, 24-100 Puławy
autor
  • Institute of Soil Science and Plant Cultivation, National Research Institute , ul.Czartoryskich 8, 24-100 Puławy
autor
  • Institute of Soil Science and Plant Cultivation, National Research Institute , ul.Czartoryskich 8, 24-100 Puławy

Bibliografia

  • Abeles F.B., Lonski J., 1969. Stimulation of lettuce seed germination by ethylene. Plant Physiol., 44: 277-280.
  • Anderson L., Milberg P., 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Sci. Res., 8: 29-38.
  • Arana M.V., Burgin M.J., Demiquel L.C., Sánchez R.A., 2007. The very-low-fluence and high-irradiance responses of the phytochromes have antagonistic effects on germination, mannan-degrading activities, and DfGA3ox transcript levels in Datura ferox seeds. J. Exp. Bot., 58: 3997-4004.
  • Barton. L.V., 1965. Seed dormancy: General survey of dormancy types in seeds, and dormancy imposed by external agents., In: Ruhland W, editor. Encyclopedia of Plant Physiology, Springer Verlag,. XV/3: 699-720.
  • Baskin J.M., Baskin C.C., 1977. Role of temperature in the germination ecology of three summer annual weeds. Oecologia, 30: 377-382.
  • Baskin J.M., Baskin C.C., 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience, 35: 492-498.
  • Baskin J.M., Baskin C.C., 2004. A classification system for seed dormancy. Seed Sci. Res., 14: 1-16.
  • Batlla D., Kruk B.C., Benech-Arnold R.L., 2000. Very early detection of canopy presence by seeds through perception of subtle modifications in red:far red signals. Funct. Ecol., 14: 195-202.
  • Bażanska J., Lewak S., 1986. Light inhibits germination of rape seeds at unfavourable temperatures. Acta Physiol. Plant., 8: 145-149.
  • Blaauw-Jansen G., Blaauw O.H., 1976. Further evidence for the existence of two phytochrome systems from two distinct effects of far-red light on lettuce seed germination. Acta Bot. Neerl., 25: 213-219.
  • Bochenek A., Gołaszewski J., Górecki R.J., 2007. The seasonal dormancy pattern and germination of Matricaria maritima subsp. inodora (L.) Dostal seeds in hydrotime model terms. Acta Soc. Bot. Polon., 76: 299-307.
  • Borthwick H.A., Hendricks S.B., Parker M.W., Toole E.H., Toole V.K., 1952. A reversible photoreaction controlling seed germination. Proc. Natl. Acad. Sci., 38: 662-666.
  • Brouwer W., Stählin A., 1955. Handbuch der Samenkunde. Frankfurt a.M.: DLG Verlags.
  • Burgass R.W., Powell A.A., 1984. Evidence for repair processes in the invigoration of seeds by hydration. Ann. Bot., 53: 753-757.
  • Casal J.J., Sánchez R.A., Botto J.F., 1998. Modes of action of phytochromes. J. Exp. Bot., 49: 127-138.
  • Caspary R., 1860. Bulliarda aquatica D. C. Schr. Kgl. PhysOekon. Ges. Königsberg, 1: 66-91.
  • Cohen D., 1968. A general model of optimal reproduction in a randomly varying environment. J. Ecol., 56: 219-228.
  • Contreras S., Bennett M.A., Metzger J.D., Tay D., Nerson H., 2009. Red to far-red ratio during seed development affects lettuce seed germinability and longevity. HortScience, 44: 130-134.
  • Corbineau F., Belaid D., Côme D., 1992. Dormancy of Bromus rubens L. seeds in relation to temperature, light and oxygen effects. Weed Res., 32: 303-310.
  • Corbineau F., Côme D., 1982. Effect of the intensity and duration of light at various temperatures on the germination of Oldenlandia corymbosa L. seeds. Plant Physiol., 70: 1518-1520.
  • Doroszewski A., 1989. The effect of solar radiation fluence rate on seed germination. Zesz. Probl. Post. Nauk Rol., 369: 213-221.
  • Doroszewski A., 1997. Natural far red irradiation and weed seed persistence in the soil. In: Ellis RH, Black M, Murdoch AJ, Hong TD. editors. Basic and applied aspects of seed biology. Kluwer, pp. 297-302.
  • Ellis R.H., Hong T.D.., Roberts EH., 1986. The response of seed of Bromus sterilis L. and Bromus mollis L. to white light of varying photon flux density and photoperiod. New Phytol., 104: 485-496.
  • Ellis R.H., Hong T.D., Roberts E.H., 1989. Quantal response of seed germination in seven genera of Cruciferae to white light of varying photon flux density and photoperiod. Ann. Bot., 63: 145-158.
  • Fenner M., 1980. The induction of a light requirement in Bidens pilosa seeds by leaf canopy shade. New Phytol., 84: 103-106.
  • Fenner M., 1991. The effects of the parent environment on seed germinability. Seed Sci. Res., 1: 75-84.
  • Flint L.H., McAllister E.D., 1935. Wave lengths of radiation in the visible spectrum inhibiting the germination of light sensitive lettuce seeds. Smith Misc. Coll., 94: 1-11.
  • Frankland B., Taylorson R., 1983. Light control of seed germination. In: Shropshire W., Mohr H. editors. Encyclopedia of Plant Physiology. Springer-Verlag, Vol. 16A. pp. 428-456.
  • Franklin K.A., Whitelam G..C., 2005. Phytochromes and shade-avoidance responses in plants. Ann. Bot., 96: 169-175.
  • Froud-Williams R.J., Drennan D.S.H., Chancellor R.J., 1984. The influence of burial and dry-storage upon cyclic changes in dormancy, germination and response to light in seeds of various arable weeds. New Phytol., 96: 473-481.
  • Gallagher R.S., Cardina J., 1998. Ecophysiological aspects of phytochrome-mediated germination in soil seed banks. Aspects Appl. Biol., 51: 165-172.
  • Górska K., Pięta J., 1981. Imposition of secondary dormancy by far red radiation in seeds of some trees and shrubs species. Proc. of the 5th Seminar on Phytoactinometry, Puławy, pp. 79-84. [in Polish]
  • Górski T., 1975. Germination of seeds in the shadow of plants. Physiol. Plant., 34: 342-346.
  • Górski T., 1976. Red and far red radiation at sunset: Annual cycle and dependence on precibitable water. Naturwissenschaften, 63: 530-531.
  • Górski T., Górska K., 1979. Inhibitory effects of full daylight on the germination of Lactuca sativa L. Planta, 144: 121-124.
  • Górski T., Górska K., Nowicki J., 1977. Germination of seeds of various herbaceous species under leaf canopy. Flora, 166: 249-259.
  • Górski T., Górska K., Rybicki J., 1978. Studies on the germination of seeds under leaf canopy. Flora, 167: 289-299.
  • Górski T., Jurzysta A., 1988. Inhibition of seed germination by air flow and its causes. Pam. Puł., 91: 205-214. [in Polish]
  • Górski T., Rybicki J., 1985. Far red radiation as a factor extending seed viability in soils. Pam. Puł., 85: 29-40. [in Polish]
  • Grime J.P., Mason G., Curtis A.V., Rodman J., Band S.R, Mowforth M.A.G., Neal A.M., Shaw S., 1981. A comparative study of germination characteristics in a local flora. J. Ecol., 69: 1017-1059.
  • Grzesiuk S., 1967. Fizjologia nasion. Warszawa, PWRiL.
  • Grzesiuk S., Kulka K., 1981. Fizjologia i biochemia nasion. Warszawa: PWRiL.
  • Haccou P., Iwasa Y., 1995. Optimal mixed strategies in stochastic environments. Theor. Popul. Biol., 47: 212-243.
  • Hartmann K.M., 1966. A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol., 5: 349-366.
  • Hartmann K.M., Grundy A.C., Market R., 2005. Phytochrome-mediated long-term memory of seeds. Protoplasma, 227: 47-52.
  • Hayes R.G., Klein W.H., 1974. Spectral quality influence of light during development of Arabidopsis thaliana plants in regulating seed germination. Plant Cell Physiol., 15: 643-653.
  • Hegi G., Various issues. Illustrierte Flora von Mitteleuropa. Verlag Paul Parey.
  • Hendricks S.B., Toole E.H., Toole V.K., Borthwick H.A., 1959. Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. III. Control of seed germination and axis elongation. Bot. Gaz., 121: 1-8.
  • Heschel M.S., Butler C.M., Barua D., Chiang G.C.K., Wheeler A., Sharrock R.A., Whitelam G.C., Donohue K. 2008. New roles of phytochromes during seed germination. Int. J. Plant Sci., 169: 531-540.
  • Hilton J.R., 1982. An unusual effect of the far-red absorbing form of phytochrome: Photoinhibition of seed germination in Bromus sterilis L. Planta, 155: 524-528.
  • Hilton J.R., 1987. Photoregulation of germination in freshly-harvested and dried seeds of Bromus sterilis L. J. Exp.Bot., 38: 286-292.
  • Holmes M.G., Smith H., 1977. The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem. Photobiol., 25: 539-545.
  • Imbert E., 2002. Ecological consequences and ontogeny of seed heteromorphism. Persp. Plant Ecol. Evol. Syst., 5: 13-36.
  • Isikawa S., 1954. Light sensitivity against germination. I. Photoperiodism of seeds. Bot. Mag. Tokyo, 67: 51-56.
  • Jankowska-Błaszczuk M., Daws M.I., 2007. Impact of red:far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Funct. Ecol., 21: 1055-1062.
  • Jankowska-Błaszczuk M., Kwiatkowska A.J., Panufnik D., Tanner E., 1998. The size and diversity of the soil seed banks and the light requirements of the species in sunny and shady natural communities of the Białowieża Primeval Forest. Plant Ecol., 136: 105-118.
  • Kępczyński J., Kępczyńska E., 1997. Ethylene in seed dormancy and germination. Physiol. Plant., 101: 720-726.
  • King T.J., 1975. Inhibition of seed germination under leaf canopies in Arenaria serpyllifolia, Veronica arvensis and Cerastium holosteides. New Phytol., 75: 87-90.
  • Kinzel W., 1920. Frost und Licht als beeinflussende Kräfte bei der Samenkeimung. Stuttgart: Eugen Ulmer.
  • Kommerell E., 1927. Influence of light on seed germination. Bot. Gaz., 84: 223-224.
  • Kulpa W., 1974. Nasionoznawstwo chwastów. Warszawa, PWRiL.
  • Lalonde S, Saini H.S., 1992. Comparative requirement for endogenous ethylene during seed germination. Ann. Bot., 69: 423-428.
  • Lewak S, Rudnicki R.M., 1977. After-ripening in cold-requiring seeds. In: Khan AA. editor. The physiology and biochemistry of seed dormancy and germination. North Holland Publ. Comp., pp. 193-217.
  • Li X.I., Burton P.J., Leadem C.L., 1994. Interactive effects of light and stratification on the germination of some British Columbia conifers. Can. J. Bot., 72: 1635-1701.
  • Listowski A., 1927. Über den Einfluss verschiedenfarbiges Lichtes auf die Keimung der Sporen und Entwicklung der Protonemen einiger Moose. Bull. Acad. Sci. Ser. B., Sci. Nat., 7: 631-666.
  • Massantini F., 1978. Radiazioni luminose, fioriturae germinazione. Sementi Elette, 24: 19-25.
  • Meischke D., 1936. Über den Einfluss der Strahlung auf Licht - und Dunkelkeimer. Jb. Wiss. Bot., 83: 359-405.
  • Milberg P., Anderson L., Thompson K., 2000. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci. Res., 10: 99-104.
  • Negbi M., Koller D., 1964. Dual action of white light in the photocontrol of germination of Oryzopsis miliacea. Plant Physiol., 39: 247-253.
  • Negm F.B,, Smith O.E., 1978. Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seeds. Plant Physiol., 62: 473-476.
  • Pamukov K,, Schneider M.I., 1978. Light inhibition of Nigella germination: the dependence of a high irradiance reaction on 720 nm irradiance. Bot. Gaz.,139: 56-59.
  • Petruzzelli L., Coraggio I., Leubner-Metzger G., 2000. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta, 211: 144-149.
  • Pons T.L., 1991. Induction of dark dormancy in seeds, its importance for the seed bank in the soil. Funct. Ecol., 5: 669-675.
  • Pons T.L., 1992. Seed responses to light. In: Fenner M., editor. Seeds: The ecology of regeneration in plant communities. CAB International., pp. 259-284.
  • Roberts E.H., 1972. Dormancy: a factor affecting seed survival in the soil. In: Roberts E.H., editor. Viability of seeds. Chapman and Hall, pp. 321-359.
  • Rollin P., 1972. Phytochrome control of seed germination. In: Mitrakos K., Shropshire W. Jr., editors. Phytochrome. London and New York Academic Press, pp. 229-254.
  • Rudnicki R.M., Braun J.W., Khan A.A., 1978. Low pressure and ethylene in lettuce seed germination. Physiol. Plant., 43: 189-194.
  • Salisbury E., 1961. Weeds and aliens. London: Collins.
  • Sattin M., Zuin M.C., Sartorato J., 1994. Light quality beneath field-grown maize, soybean and wheat canopies - red: far red variations. Physiol. Plant., 91: 322.
  • Schulz M.R., Klein R.M., 1965. On the mechanism of light-induced germination inhibition of Phacelia tanacetifolia. Amer. J. Bot., 52: 278-281.
  • Shichijo C., Katada K., Tanaka O., Hashimoto T., 2001. Phytochrome A-mediated inhibition of seed germination in tomato. Planta, 213: 764-769.
  • Silvertown J.W., 1980. Leaf-canopy-induced dormancy in a grassland flora. New Phytol., 85: 109-118.
  • Smith H., 2000. Phytochromes and light signal perception – an emerging synthesis. Nature, 407: 585-591.
  • Stoutjesdijk P., 1972. Spectral transmission curves of some type of leaf canopies with a note on seed germination. Acta Bot. Neerl., 21: 185-191.
  • Szafer W., Kulczyński S., Pawłowski B., 1976. Rośliny polskie. Warszawa, PWN.
  • Taylorson R.B., Borthwick H.A., 1969. Light filtration by foliar canopies: significance for light-controlled weed seed germination. Weed Sci., 17: 48-51.
  • Taylorson R.B,, Hendricks S.B., 1969. Action of phytochrome during prechilling of Amaranthus retroflexus L. seeds. Plant Physiol., 44: 821-825.
  • Thanos C.A, Georghiou K, Delipetrou P., 1994. Photoinhibition of seed germination in the maritime plant Matthiola tricuspidata. Ann. Bot., 73: 639-644.
  • Thanos C.A., Mitrakos K., 1979. Phytochrome-mediated germination control of maize caryopses. Planta, 146: 415-417.
  • Thompson K., Band S.R., Hodgson I.G., 1993. Seed size and shape predict persistence in soil. Funct. Ecol., 7: 236-241.
  • Toole V.K., Bailey W.K., Toole E.H., 1964. Factors influencing dormancy of plant seeds. Plant Physiol., 39: 822-832.
  • Valio I.F.M., Joly C.A., 1979. Light sensitivity of the seeds on the distribution of Cecropia glaziovi Snethlage (Moraceae). Z. Pflanzenphysiol., 91: 371-376.
  • Van der Veen R., 1970. The importance of the red-far red antagonism in photoblastic seeds. Acta Bot. Neerl., 19: 809-812.
  • Van der Woude W.J., Toole V.K., 1980. Studies on the mechanism of enhancement of phytochrome-dependent lettuce seed germination by prechilling. Plant Physiol., 66: 220-224.
  • Venable D.L., 1985. The evolutionary ecology of seed heteromorphism. Am. Nat., 126: 577-595.
  • Vidaver W., 1977. Light and seed germination. In: Khan AA. editor. The physiology and biochemistry of seed dormancy and germination. North Holland Publ. Comp., pp. 181-192.
  • Vidaver W., Hsiao A.I., 1972. Persistence of phytochrome-mediated germination control in lettuce seeds for 1 year following a single monochromatic light flash. Can. J. Bot., 50: 687-689.
  • Villiers T.A., 1974. Seed ageing: Chromosome stability and extended viability of seeds stored fully imbibed. Plant Physiol., 53: 875-878.
  • Wesson G., Wareing P.F., 1969. The induction of light sensitivity in weed seeds by burial. J. Exp. Bot., 20: 414-425.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1d21edf0-ec52-43fa-8685-194efea3d600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.