PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 05 |

Tytuł artykułu

The occurrence of chloroplast peripheral reticulum in grasses: a matter of phylogeny or a matter of function?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The chloroplast peripheral reticulum (PR) is a structure of unknown function. Some authors postulated that it is a characteristic feature of C₄ plants, although it was reported from C₃ species as well. It is unknown whether the occurrence of PR follows a phylogenetic (it is found in clades containing C₄ species, regardless of the photosynthetic type) or functional (photosynthetic pathway dependent) pattern. Here, we present a phylogenetically controlled analysis of the occurrence, form and functional aspects of PR in grasses. The occurrence of the PR follows a functional and not a phylogenetic pattern. Its most elaborated form (PR type I) is a unique feature of C₄ species. Although PR was found in some of the studied C₃ grasses, it was always less developed than PR in the chloroplasts of Kranz mesophyll cells of C₄ species. The size of PR in C₄ plants was found to increase when the plants were grown under low light intensity. Additional observations, such as a negative correlation between PR size and chloroplast surface and PR occurrence in vicinity of mitochondria or plasmodesmata, suggest that PR may play some role in C₄ metabolism.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

05

Opis fizyczny

p.1133-1142,fig.,ref.

Twórcy

  • Department of Plant Molecular Ecophysiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Plant Molecular Ecophysiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute, National Research Institute, Radzikow, 05-870 Blonie, Poland

Bibliografia

  • Almela L, Fernandez-Lopez JA, Candela ME, Egea C, Alcazar MD (1996) Changes in pigments, chlorophyllase activity, and chloroplast ultrastructure in ripening pepper for paprika. Agric Food Chem 44:1704–1711. doi:10.1021/jf9504531
  • Black CC, Mollenhauer HH (1971) Structure and distribution of chloroplasts and other organelles in leaves with various rates of photosynthesis. Plant Physiol 47:15–23
  • Brautigam A, Weber APM (2011) Transport processes: connecting the reactions of C₄ photosynthesis. In: Raghavendra AS, Sage RF (eds) C₄ photosynthesis and related CO₂ concentrating mechanisms. Springer, Dordrecht, pp 199–219
  • Bruhl J, Perry S (1995) Photosynthetic pathway-related ultrastructure of C₃, C₄ and C₃-like C₃–C₄ intermediate sedges (Cyperaceae), with special reference to Eleocharis. Aust J Plant Physiol 22:521–530
  • Chapman EA, Bain JM, Gove DW (1975) Mitochondria and chloroplast peripheral reticulum in the C₄ plants Amaranthus edulis and Atriplex spongiosa. Aust J Plant Physiol 2:207–223
  • Drożak A, Romanowska E (2006) Acclimation of mesophyll and bundle sheath chloroplasts of maize to different irradiances during growth. Biochim Biophys Acta 1757(11):1539–1546
  • Edwards GE, Voznesenskaya EV (2011) C₄ photosynthesis: Kranz forms and single-cell C₄ in terrestrial plants. In: Raghavendra AS, Sage RF (eds) C₄ photosynthesis and related CO₂ concentrating mechanisms. Springer, Dordrecht, pp 29–61
  • Evert RF, Eschrich W, Heyser W (1977) Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta 136:77–89
  • Furbank RT (2011) Evolution of the C₄ photosynthetic mechanism: are there really three C₄ acid decarboxylation types? J Exp Bot 62:3103–3108. doi:10.1093/jxb/err080
  • Furbank RT, Hatch MD, Jenkins CLD (2000) C₄ photosynthesis: mechanism and regulation. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, pp 435–457
  • Gracen VE, Hilliard JH, Brown RH, West SH (1972) Peripheral reticulum in chloroplasts of plants differing in CO₂ fixation pathways and photorespiration. Planta 107:189–204
  • Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C₄ origins. New Phytol 193:304–312. doi:10.1111/j.1469-8137.2011.03972.x
  • Heldt HW, Saur F (1971) The inner membrane of the chloroplast envelope as a site of specific metabolite transport. Biochim Biophys Acta 243:83–91
  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133
  • Hilliard JH, West SH (1971) The association of chloroplast peripheral reticulum with low photorespiration rates in a photorespiring plant species. Planta 99:352–356
  • Jończyk M, Sobkowiak A, Siedlecki P, Biecek P, Trzcińska-Danielewicz J, Tiuryn J, Fronk J, Sowiński P (2011) Rhythmic diel pattern of gene expression in juvenile maize leaf. PLoS One 6(8):e23628. doi:10.1371/journal.pone.0023628
  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. doi:10.1046/j.1365-3040.2000.00560.x
  • Kursanov AL (1984) Assimilate transport in plants. Elsevier, Amsterdam
  • Laetsch WM (1974) The C₄ syndrome: a structural analysis. Ann Rev Plant Physiol 25:27–52
  • Lawton JR (1988) Ultrastructure of chloroplast membranes in leaves of maize and ryegrass as revealed by selective staining methods. New Phytol 108:277–283
  • Leegood RC (1985) The intercellular compartmentation of metabolites in leaves of Zea mays L. Planta 164:163–171
  • Leegood RC (2000) Transport during C₄ photosynthesis. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, pp 459–469
  • Liu Y, Dengler NG (1994) Bundle sheath and mesophyll cell differentiation in the C₄ dicotyledon Atriplex rosea: quantitative ultrastructure. Can J Bot 72:644–657
  • Majeran W, van Wijk KJ (2009) Cell-type-specific differentiation of chloroplasts in C₄ plants. Trends Plant Sci 14:100–109. doi:10.1016/j.tplants.2008.11.006
  • Montero RS, Bribiesca E (2009) State of the art of compactness and circularity measures. Int Math Forum 4:1305–1335
  • Mosejev VV, Romanovskaya OO, Iljin VV (1987) Electron-cytochemical osmium-ferricyanide staining of cereal chloroplasts. Protoplasma 140:22–25
  • Osmond CB (1971) Metabolite transport in C₄ photosynthesis. Aust J Biol Sci 24:159–163
  • Pearcy RW, Franceschi VR (1986) Photosynthetic characteristics and chloroplast ultrastructure of C₃ and C₄ tree species grown in low- and high-light environments. Photosynth Res 9:317–331
  • Proctor MCF, Ligrone R, Duckett JG (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:345–353. doi:10.1093/aob/mcm096
  • Rosado-Alberio J, Weier TE, Stocking CR (1968) Continuity of the chloroplast membrane systems in Zea mays L. Plant Physiol 43:1325–1331
  • Shumway LK, Weier TE (1967) The chloroplast structure of Iojap maize. Am J Bot 54:773–780
  • Slack CR, Hatch MD, Goodchild DJ (1969) Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C₄-dicarboxylic acid pathway of photosynthesis. Biochem J 114:489–498
  • Sowiński P, Bilska A, Barańska K, Fronk J, Kobus P (2007) Plasmodesmata density in vascular bundles in leaves of C₄ grasses grown at different light conditions in respect to photosynthesis and photosynthate export efficiency. Environ Exp Bot 61:74–84. doi:10.1016/j.envexpbot.2007.03.00
  • Ueno O, Takeda T, Maeda E (1988) Leaf ultrastructure of C₄ species possessing different Kranz anatomical types in the Cyperaceae. Bot Mag Tokyo 101:141–152
  • Voznesenskaya EV, Chuong SDX, Koteyeva NK, Edwards GE, Franceschi VR (2005) Functional compartmentation of C₄ photosynthesis in the triple-layered chlorenchyma of Aristida (Poaceae). Funct Plant Biol 32:67–77. doi:10.1071/FP04118
  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. doi:10.1093/jxb/eri060
  • Wang D, Portis AR, Moose SP, Long SP (2008) Cool C₄ photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567. doi:10.1104/pp.108.120709
  • Westphal S, Soll J, Vothknecht UC (2003) Evolution of chloroplast vesicle transport. Plant Cell Physiol 44:217–222. doi:10.1093/pcp/pcg023
  • Wise RR (2006) The diversity of plastid form and function. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 3–26
  • Wise RR, Harris JB (1984) The three-dimensional structure of the Cyphomandra betacea chloroplast peripheral reticulum. Protoplasma 119:222–225

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f63933ab-b977-4bfe-8cc3-7e755fae0819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.