PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 2 |

Tytuł artykułu

Participation of muscarinic receptors in memory consolidation in passive avoidance learning

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is well-known that the cholinergic system and the muscarinic cholinergic receptors are associated with cognitive functions. Here we examined whether a non-selective muscarinic receptor antagonist scopolamine affects learning performance and/or synaptic plasticity during the memory consolidation period. Adult male Wistar rats (250-300 g) were injected with scopolamine (2 mg/kg) or saline immediately after training in a "passive avoidance" task. Memory retention test was conducted 24h after training. The changes in the latency of the first entry into a dark compartment of a test chamber was choosen as a criterion of learning. The efficacy of synaptic transmission was estimated by the changes in the basal level of focal potentials (fEPSP amplitude and slope ratio) before training (baseline), 90 min after the training (consolidation period), and 24 hour after the training (retention period). We found that foot-shock presentation by itself had no effect on fEPSP within the first 90 min after training, but in 24 hour fEPSPs were decreased. In untrained rats administration of scopolamine had no effect on the fEPSP amplitude within the first 90 min after the injection, but in 24 h we observed an increase in the fEPSP amplitude. In trained animals, scopolamine decreased the fEPSP amplitude in the hippocampal CA1 area during first 1.5 h after the injection. However, the drug had no effect on the memory retention in the passive avoidance task. Taken together our data suggest that scopolamine modifies the synaptic placticity of the hippocampal network but does not induce significant changes in the retention of the passive avoidance skill.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

2

Opis fizyczny

p.211-217,fig.,ref.

Twórcy

  • Neurophysiology of Learning Lab, Institute for Higher Nervous Activity and Neurophysiology Russian Academy of Science, Moscow, Russia
autor
  • Neurophysiology of Learning Lab, Institute for Higher Nervous Activity and Neurophysiology Russian Academy of Science, Moscow, Russia
  • Neurophysiology of Learning Lab, Institute for Higher Nervous Activity and Neurophysiology Russian Academy of Science, Moscow, Russia

Bibliografia

  • Alkondon M, Pereira EF, Almeida LE, Randall WR, Albuquerque EX (2000) Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hip¬pocampus. Neuropharmacology 39: 2726-2739.
  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39. Bradley SR, Lameh J, Ohrmund L, Son T, Bajpai A, Nguyen D, Friberg M, Burstein ES, Spalding TA, Ott TR, Schiffer HH, Tabatabaei A, McFarland K, Davis RE, Bonhaus DW (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58: 365-373.
  • Bunce JG, Sabolek HR, Chrobak JJ (2004) Intraseptal infu¬sion of the cholinergic agonist carbachol impairs delayed- non-match-to-sample radial arm maze performance in the rat. Hippocampus 14: 450-459.
  • Chintoh A, Fulton J, Koziel N, Aziz M, Sud M, Yeomans JS (2003) Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol Biochem Behav 76: 53-61.
  • Day J, Damsma G, Fibiger HC (1991) Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity: an in vivo microdialysis study. Pharmacol Biochem Behav 38: 723-729.
  • Diaz del Guante MA, Cruz-Morales SE, Prado-Alcalá RA (1991) Time-dependent effects of cholinergic blockade of the striatum on memory. Neurosci Lett 122: 79-82.
  • Drever BD, Riedel G, Platt B (2011) The cholinergic system and hippocampal plasticity. Behav Brain Res 221: 505-514.
  • Falsafi SK, Deli A, Hoger H, Pollak A, Lubec G (2012) Scopolamine administration modulates muscarinic, nico¬tinic and NMDA receptor systems. PLoS One 7: e32082.
  • Flood JF, Cherkin A (1986) Scopolamine effects on memory retention in mice: a model of dementia? Behav Neural Biol 45: 169-184.
  • Herrera-Morales W, Mar I, Serrano B, Bermudez-Rattoni F (2007) Activation of hippocampal postsynaptic muscar- inic receptors is involved in long-term spatial memory formation. Eur J Neurosci 25: 1581-1588.
  • Hirata R, Matsumoto M, Judo C, Yamaguchi T, Izumi T, Yoshioka M, Togashi H (2009) Possible relationship between the stress-induced synaptic response and meta- plasticity in the hippocampal CA1 field of freely moving rats. Synapse 63: 549-556.
  • Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 168: 130-134.
  • Izquierdo LA, Barros DM, Vianna MR, Coitinho A, de David e Silva T, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 22: 269-287.
  • Jerusalinsky D, Kornisiuk E, Izquierdo I (1997) Cholinergic neurotransmission and synaptic plasticity concerning memory processing. Neurochem Res 22: 507-515.
  • Klinkenberg I, Blokland A (2010) The validity of scopol- amine as a pharmacological model for cognitive impair¬ment: a review of animal behavioral studies. Neurosci Biobehav Rev 34: 1307-1350.
  • Leung LS, Shen B, Rajakumar N, Ma J (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23: 9297-9304.
  • Li S, Cullen WK, Anwyl R, Rowan MJ (2007) Muscarinic acetylcholine receptor-dependent induction of persistent synaptic enhancement in rat hippocampus in vivo. Neuroscience 144: 754-761.
  • Matsumoto M, Togashi H, Kaku A, Kanno M, Tahara K, Yoshioka M (2005) Cortical GABAergic regulation of dopaminergic responses to psychological stress in the rat dorsolateral striatum. Synapse 56: 117-121.
  • Matsuyama S, Matsumoto A (2003) Epibatidine induces long-term potentiation (LTP) via activation of alpha4beta2 nicotinic acetylcholine receptors (nAChRs) in vivo in the intact mouse dentate gyrus: both alpha7 and alpha4beta2 nAChRs essential to nicotinic LTP. J Pharmacol Sci 93: 180-187.
  • Moss DE, Rogers JB, Deutsch JA, Salome RR (1981) Time dependent changes in anterograde scopolamine-induced amnesia in rats. Pharmacol Biochem Behav 14: 321¬323.
  • Nomura Y, Nishiyama N, Saito H, Matsuki N (1994) Role of cholinergic neurotransmission in the amygdala on perfor¬mances of passive avoidance learning in mice. Biol Pharm Bull 17: 490-494.
  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinate. Academic Press, New York, NY.
  • Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80: 178-193.
  • Quirarte GL, Cruz-Morales SE, Cepeda A, García-Montañez M, Roldán-Roldán G, Prado-Alcalá RA (1994) Effects of central muscarinic blockade on passive avoidance: antero¬grade amnesia, state dependency, or both? Behav Neural Biol 62: 15-20.
  • Rush DK (1988) Scopolamine amnesia of passive avoid¬ance: a deficit of information acquisition. Behav Neural Biol 50: 255-274.
  • Sánchez G, Alvares Lde O, Oberholzer MV, Genro B, Quillfeldt J, da Costa JC, Cerveñansky C, Jerusalinsky D, Kornisiuk E (2009) M4 muscarinic receptors are involved in modulation of neurotransmission at synapses of Schaffer collaterals on CA1 hippocampal neurons in rats. J Neurosci Res 87: 691-700.
  • Stillman MJ, Shukitt-Hale B, Galli RL, Levy A, Lieberman HR (1996) Effects of M2 antagonists on in vivo hip¬pocampal acetylcholine levels. Brain Res Bull 41: 221¬226.
  • van Haeften T, Baks-te-Bulte L, Goede PH, Wouterlood FG, Witter MP (2003) Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus 13: 943-952.
  • Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26: 3206¬3209.
  • Wiener NI, Messer J (1973) Scopolamine-induced impairment of long-term retention in rats. Behav Biol 9: 227-234.
  • Ye L, Qi JS, Qiao JT (2001) Long-term potentiation in hip¬pocampus of rats is enhanced by endogenous acetylcho- line in a way that is independent of N-methyl-D-aspartate receptors. Neurosci Lett 300: 145-148.
  • Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002) Characterization of central inhibitory mus¬carinic autoreceptors by the use of muscarinic acetylcho¬line receptor knock-out mice. J Neurosci 22: 1709-1717.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-846199df-989d-4d8f-b6fc-b7e8bbabf8f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.