PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Copper phytoextraction with Salix purpurea x viminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
One-year-old cuttings of basket willow (Salix purpurea × viminalis) were cultivated hydroponically under increasing Cu concentrations (0, 1, 2 and 3 mM) and at four Ca/Mg ratios (4:1, 1:10, 20:1 and 1:¼). After 14 days, rhizosphere and leaf samples were analysed. Salix plants were able to release relatively high amounts of low molecular weight organic acids (LMWOAs) in a short period of time. The total amount of LMWOAs increased with increasing Cu concentrations. Oxalic and acetic acids were dominant, and act as complexing agents for Cu ions, and therefore, organic exudates should be taken into account in phytoextraction of polluted areas. The Ca/Mg ratio of the medium significantly influenced not only concentration, but also the composition of LMWOAs. Phenolics content in leaves increased with the excess of Ca and Mg and with Cu level in the medium for all Ca/Mg ratios. The accumulation of glucose, fructose and sucrose in leaves was observed for deficiency and excess of Ca and/or Mg and Cu treatment at all Ca/Mg ratios. Excess calcium (Ca/Mg = 20:1) led to strong induction of salicylic acid biosynthesis, probably resulting from enhanced oxidative stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.903-913,fig.,ref.

Twórcy

  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
  • Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 55, 60-637 Poznan, Poland

Bibliografia

  • Ait Ali N, Pilar Bernal M, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper and zinc. Aquat Bot 80:163–176. doi:10.1016/j.aquabot.2004.08.008
  • Albarracín V, Amoroso MJ, Abate CM (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79:131–137. doi:10.1016/j.chemosphere.2010.01.038
  • Anjum NA, Ahmada I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324. doi:10.1016/j.envexpbot.2011.07.002
  • Barabasz A, Krämer U, Hanikenne M, Rudzka J, Antosiewicz DM (2010) Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply. J Exp Bot 61:3057–3067. doi:10.1093/jxb/erq129
  • Berkelaar E, Hale BA (2003) Accumulation of cadmium by durum wheat roots: bases for citrate-mediated exceptions to the free ion model. Environ Toxicol Chem 22:1155–1161. doi:10.1002/etc.5620220526
  • Chadzinikolau T, Kozłowska M, Mleczek M (2011) Calcium and magnesium influence on phytoremediation of heavy metals using Salix viminalis L. Nauka Przyroda Technologie 5(6):1–10
  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486. doi:10.1007/s004250000458
  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154
  • Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. doi:10.1105/tpc.7.7.1085
  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012a) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions—hydroponic investigations. J Hazard Mater 217–218:429–438. doi:10.1016/j.jhazmat.2012.03.056
  • Drzewiecka K, Mleczek M, Waśkiewicz A, Goliński P (2012b) Oxidative stress and phytoremediation. In: Parvaiz A, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, pp 425–451
  • Elguindi J, Hao X, Lin Y, Alwathnani HA, Wei G, Rensing C (2011) Advantages and challenges of increased antimicrobial copper use and copper mining. Appl Microbiol Biotechnol 91:237–249. doi:10.1007/s00253-011-3383-3
  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191. doi:10.1105/tpc.104.023036
  • Gabrielli R, Pandolfini T (1984) Effect of Mg²⁺ and Ca²⁺ on the response to nickel toxicity in a serpentine endemic and nickelaccumulating species. Plant Physiol 62:540–544. doi:10.1111/j.1399-3054.1984.tb02796.x
  • Gąsecka M, Mleczek M, Drzewiecka K, Magdziak Z, Rissmann I, Chadzinikolau T, Golinski P (2012) Physiological and morphological changes in Salix viminalis L. as a result of plant exposure to copper. J Environ Sci Health A 74:33–40. doi:10.1080/10934529.2012.650557
  • Halliwell B (1978) Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 140: 81–88
  • Hammer D, Keller C (2002) Changes in the rhizosphere of metalaccumulating plants evidenced by chemical extractants. J Environ Qual 31:1561–1569. doi:10.2134/jeq2002.1561
  • Harter RD (1983) Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci Soc Am J 47:47–51
  • Hermle S, Günthardt-Goerg MS, Schulin R (2006) Effects of metal contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Environ Pollut 144:703–714. doi:10.1016/j.envpol.2005.12.040
  • Jacob DL, Otte ML (2004a) Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond. Environ Pollut 130:337–345. doi:10.1016/j.envpol.2004.01.006
  • Jacob DL, Otte ML (2004b) Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailing types. Sci Total Environ 333:9–24. doi:10.1016/j.scitotenv.2004.05.005
  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44. doi:10.1023/A:1004356007312
  • Jowett D (1964) Population studies on lead-tolerant Agrostis tenuis. Evolution 18:70–81
  • Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. Biogeochemistry of trace elements, 3rd edn. Wyd, Naukowe PWN, Warsaw (in Polish)
  • Kamnev AA, Van Der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258. doi:10.1023/A: 1026436806319
  • Karamushka VI, Gadd GM (1994) Interaction of Saccharomyces cerevisiae with gold: toxicity and accumulation. Biometals 12:289–294. doi:10.1023/A:1009210101628
  • Kidd P, Barcelo J, Pilar Bernal M, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259. doi:10.1016/j.envexpbot.2009.06.013
  • Landberg T, Greger M (2004) No phytochelatin (PC2 and PC3) detected in Salix viminalis. Physiol Plant 121:481–487. doi:10. 1111/j.0031-9317.2004.00347.x
  • Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function—assessed by the example of cadmium remediation by willow (Salix ssp). Agric Syst 89:68–89. doi:10.1016/j.agsy.2005.08.004
  • Li JT, Liao B, Dai ZY, Zhu R, Shu WS (2009) Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76:1233–1239. doi:10.1016/j.chemosphere. 2009.05.042
  • Lombini A, Llugany M, Poschenrieder CH, Dinelli E, Barcelo J (2003) Influence of the Ca/Mg ratio on Cu resistance in three Silene armeria ecotypes adapted to calcareous soil or to different, Ni- or Cu-enriched, serpentine sites. J Plant Physiol 160:1451–1456. doi:10.1078/0176-1617-01002
  • Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Drzewiecka K, Golinski P (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40. doi:10.1016/j.ecoenv.2010.09.003
  • Maksymiec W, Baszyński T (1999) Are calcium ions and calcium channels involved in the mechanisms of Cu²⁺ toxicity in bean plants? The influence of leaf age. Photosynthetica 36:267–278. doi:10.1023/A:1007007929102
  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523–530
  • Mleczek M, Kozłowska M, Kaczmarek Z, Chadzinikolau T, Goliński P (2012) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. I. The effectiveness of Cd, Cu, Pb, and Zn bioaccumulation and plant growth. Int J Phytoremed 14:75–88. doi:10.1080/15226514.2011.573824
  • Mleczek M, Gąsecka M, Drzewiecka K, Goliński P, Magdziak Z, Chadzinikolau T (2013) Copper phytoextraction with willow (Salix viminalis L.) under various Ca/Mg ratios. Part 1. Copper accumulation and plant morphology changes. Acta Physiol Plant 35:3251–3259. doi:10.1007/s11738-013-1360-4
  • Morkunas I, Marczak Ł, Stachowiak J, Stobiecki M (2005) Sucrose-induced lupine defense against Fusarium oxysporum: sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiol Biochem 43:363–373. doi:10.1016/j.plaphy.2005.02.011
  • Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD (2005) Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuar Coast Shelf Sci 65:191–198. doi:10.1016/j.ecss.2005.06.007
  • Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD (2010) LMWOA (low molecular weight organic acid) exudation by salt marsh plants: natural variation and response to Cu contamination. Estuar Coast Shelf Sci 88:63–70. doi:10.1016/j.ecss.2010.03.008
  • Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater 170:1156–1163. doi:10.1016/j.jhazmat.2009.05.084
  • Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilization and plant availability—the impact of organic acid commonly exuded from roots. Plant Soil 230:107–113. doi:10.1023/A:1004865811529
  • Ösretås AH, Greger M (2006) Interactions between calcium and copper or cadmium in Norway spruce. Biol Plant 50:647–652. doi:10.1007/s10535-006-0101-6
  • Oze C, Skinner C, Schroth AW, Coleman RG (2008) Growing up green on serpentine soils: biogeochemistry of serpentine vegetation in the Central Coast Range of California. Appl Geochem 23:3391–3403. doi:10.1016/j.apgeochem.2008.07.014
  • Parker DR, Pedler JF, Thomason DN, Li H (1998) Alleviation of copper rhizotoxicity by calcium and magnesium at defined free metal-ion activities. Soil Sci Soc Am J 6:965–972. doi: IND43627815
  • Parker DR, Pedler JF, Ahnstrom ZAS, Resketo M (2001) Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20:899–906. doi:10.1023/A:1004249923989
  • Peñarrubia L, Andrés-Colás N, Moreno J, Puig S (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J Biol Inorg Chem 15:29–36. doi:10.1007/s00775-009-0591-8
  • Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320. doi:10.1093/treephys/27.2.313
  • Scrase-Field SAMG, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6:500–506. doi:10.1016/S1369-5266(03)00091-8
  • Sheen J, Zhou L, Jang J-Ch (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418
  • Simon E, Lefèbvre C (1977) Aspects de la tolerance aux metaux lourds chez Agrostis tenuis Sibth., Festuca ovina L. et Armeria maritima (Mill.) Willd. Acta Oecolo Oecol Plant 12:95–100
  • Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenerg 32:1227–1234. doi:10.1016/j.biombioe.2008.02.023
  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 99:169–198. doi:10.1016/S0016-7061(00)00102-6
  • Stroiński A, Zielezińska M (1997) Cadmium effect on hydrogen peroxide, glutathione and phytochelatins levels in potato tuber. Acta Physiol Plant 19:127–136. doi:10.1007/s11738-997-0029-2
  • Taiz RL, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland
  • Tao S, Liu WX, Chen YJ, Xu FL, Dawson RW, Li BG, Cao J, Wang XJ, Hu JY, Fang JY (2004) Evaluation of factors influencing root-induced changes of copper fractionation in rhizosphere of a calcareous soil. Environ Pollut 129:5–12. doi:10.1016/j.envpol.2003.10.001
  • Tlustŏs P, Száková J, Vysloŭzilová M, Pavlíková D, Weger J, Javorská H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol 2:254–275. doi:10.2478/s11535-007-0012-3
  • Tukendorf A, Rauser WE (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci 70:155–166. doi:10.1016/0168-9452(90)90129-C
  • Vergnano Gambi O, Gabbrielli R, Pandolfini T (1992) Some aspects of the metabolism of Alyssum bertolonii Desv. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils. Intercept, Andover, pp 319–329
  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511. doi:10.1093/aob/mcg164
  • Wingler A, Purdy S, MacLean A, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399. doi:10.1093/jxb/eri279
  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574. doi:10.1104/pp.126.2.564
  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179. doi:10.1016/j.sajb.2009.10.007
  • Yanqun Z, Yuan L, Schvartz C, Langladec L, Fan L (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ Int 30:567–576. doi:10.1016/j.envint.2003.10.012
  • Yruela I (2005) Toxic metals in plants: copper in plants. Br J Plant Physiol 17:145–156. doi:10.1590/S1677-04202005000100012

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4565d434-49e4-40d3-bbc3-b9f602fe24be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.