PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | 72 | 1 |
Tytuł artykułu

Seaweed extracts’ multifactorial action: influence on physiological and biochemical status of Solanaceae plants

Treść / Zawartość
Warianty tytułu
PL
Wielokierunkowe działanie ekstraktów z alg morskich: wpływ na status fizjologiczny i biochemiczny warzyw z rodziny Solanaceae
Języki publikacji
EN
Abstrakty
EN
Seaweeds are one of the important marine bioresources which are nowadays termed as eco-friendly stimulators of crop growth, stress tolerance, and yielding. In this review, we give an update of the current state of our understanding of the seaweed extracts (SWE) effects on the physiological alterations they induce in Solanaceae vegetables. SWE may provide a powerful and environmentally friendly approach to nutrient management. A pool of common bioactive molecules of SWE provides enhancement of the antioxidant machinery of treated plants providing balanced development, earlier flowering, and enhanced fruiting. The basic mechanisms of SWE action seem to be unspecific for tomato, pepper, and eggplant. They include accelerating growth, nutrient uptake, and photosynthesis performance, which can induce plant tolerance to adverse environmental conditions, improve flowering, fruit setting, and yield, and enhance nutritional quality of the crops. The mechanism of SWE action is complex because of multielement composition and cross-action between constituents.
PL
Algi morskie są elementem zasobów biologicznych mórz i oceanów. Obecnie wykorzystuje sie je w rolnictwie jako naturalne stymulatory wzrostu, tolerancji na stres i plonowania roślin uprawnych. Niniejsze opracowanie przedstawia aktualny stan wiedzy dotyczący mechanizmów działania i efektów stosowania ekstraktów z alg morskich (EAM) w uprawie warzyw z rodziny Solanaceae (pomidora, papryki i oberżyny). Bioaktywne składniki EAM regulują status mineralny roślin, modyfikują gospodarkę hormonalną, regulują rozwój wegetatywny i generatywny. Mechanizmy działania EAM wydają się być niespecyficzne dla pomidora, papryki i oberżyny. U wszystkich wymienionych gatunków zaobserwowano efektywniejsze pobieranie składników pokarmowych z gleby, lepszą wydajność fotosyntezy i przyspieszony wzrost. Te zmiany mogą z kolei wpływać pozytywnie na tolerancję roślin w stosunku do niekorzystnych warunków środowiskowych, intensyfikować kwitnienie i zawiązywanie owoców, zwiększać plon oraz poprawiać jego jakość. Ze względu na kompleksowy skład chemiczny i interakcje między składnikami, mechanizmy działania EAM są wielokierunkowe i trudne do zanalizowania na podstawie wyników doświadczeń rolniczych.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
72
Numer
1
Opis fizyczny
Article: 1758 [11 p.], fig.,ref.
Twórcy
autor
  • Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
autor
  • Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
autor
  • Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
Bibliografia
  • Gomez-Romero M, Arraez-Roman D, Segura-Carretero A., Fernandez-Gutierrez A. Analytical determination of antioxidants in tomato: typical components of the Mediterranean diet. J Sep Sci. 2007;30:452–461. https://doi.org/10.1002/jssc.200600400
  • Helmja K, Vaher M, Gorbatsova J, Kaljurand M. Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. Proceedings of the Estonian Academy of Sciences. Chemistry. 2007;56(4):172–187.
  • Kimura S, Sinha N. Tomato (Solanum lycopersicum): a model fruit-bearing crop. Cold Spring Harb Protoc. 2008;2008(11):pdb-emo105. https://doi.org/10.1101/pdb.emo105
  • Savvas D, Ntatsi G, Passam HC. Plant nutrition and physiological disorders in greenhouse grown tomato, pepper and eggplant. The European Journal of Plant Science and Biotechnology. 2008;2(1):45–61.
  • Ambroszczyk A, Cebula S, Sękara A. The effect of plant pruning on the light conditions and vegetative development of eggplant (Solanum melongena L.) in greenhouse cultivation. Vegetable Crops Research Bulletin. 2008;68:57–70. https://doi.org/10.2478/v10032-008-0005-4
  • Mourão I, Teixeira J, Brito LM, Ferreira ME, Moura ML. Pruning system effect on greenhouse grafted tomato yield and quality. In: Rahmann G, Aksoy U, editors. “Building organic bridges”: proceedings of the 4th ISOFAR Scientific Conference at the Organic World Congress; 2014 Oct 13–15; Istanbul, Turkey. Braunschweig: Johann Heinrich von Thünen-Institut; 2014. p. 941–944. [Thuenen Report; vol 1(20)]. https://doi.org/10.3220/REP_20_1_2014
  • van Oosten MJ, Pepe O, de Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture. 2017;4(1):5. https://doi.org/10.1186/s40538-017-0089-5
  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic. 2015;30(196):91–108. https://doi.org/10.1016/j.scienta.2015.09.002
  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic. 2015;30(196):109–123. https://doi.org/10.1016/j.scienta.2015.08.043
  • Ruzzi M, Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic. 2015;30(196):124–134. https://doi.org/10.1016/j.scienta.2015.08.042
  • Sharma HS, Fleming C, Selby C, Rao JR, Martin T. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol. 2014;26:465–490. https://doi.org/10.1007/s10811-013-0101-9
  • Savvas D, Ntatsi G. Biostimulant activity of silicon in horticulture. Sci Hortic. 2015;30(196):66–81. https://doi.org/10.1016/j.scienta.2015.09.010
  • Pichyangkura R, Chadchawan S. Biostimulant activity of chitosan in horticulture. Sci Hortic. 2015;196:49–65. https://doi.org/10.1016/j.scienta.2015.09.031
  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, et al. Humic and fulvic acids as biostimulants in horticulture. Sci Hortic. 2015;30(196):15–27. https://doi.org/10.1016/j.scienta.2015.09.013
  • Gómez-Merino FC, Trejo-Téllez LI. Biostimulant activity of phosphite in horticulture. Sci Hortic. 2015;196:82–90. https://doi.org/10.1016/j.scienta.2015.09.035
  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, et al. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul. 2009;28:386–399. https://doi.org/10.1007/s00344-009-9103-x
  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B. Seaweed extracts as biostimulants in horticulture. Sci Hortic. 2015;30(196):39–48. https://doi.org/10.1016/j.scienta.2015.09.012
  • Craigie JS, Seaweed extract stimuli in plant science and agriculture. J Appl Phycol. 2011;23:371–393. https://doi.org/10.1007/s10811-010-9560-4
  • Mercier L, Laffite C, Borderies G, Briand X, Esquerré-Tugayé MT, Fournier J. The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol. 2001;149:43–51. https://doi.org/10.1046/j.1469-8137.2001.00011.x
  • Yabur R, Bashan Y, Hernández-Carmona G, Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J Appl Phycol. 2007;19:43–53. https://doi.org/10.1007/s10811-006-9109-8
  • Lattner D, Flemming H, Mayer C. 13C-NMR study of the interaction of bacterial alginate with bivalent cations. Int J Biol Macromol. 2003;33:81–88. https://doi.org/10.1016/S0141-8130(03)00070-9
  • Stirk WA, Arthur GD, Lourens AF, Novak O, Strnad M, van Staden J. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol. 2004;16:31–39. https://doi.org/10.1023/B:JAPH.0000019057.45363.f5
  • Stirk W, Tarkowská D, Turecová V, Strnad M, Staden J. Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol. 2014;26:561–567. https://doi.org/10.1007/s10811-013-0062-z
  • Blunden G, Currie M, Mathe J, Hohmann J, Critchley AT. Variations in betaine yields from marine algal species commonly used in the preparation of seaweed extracts used in agriculture. Phycology. 2009;76:14.
  • MacKinnon SA, Craft CA, Hiltz D, Ugarte R. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J Appl Phycol. 2010;22:489–494. https://doi.org/10.1007/s10811-009-9483-0
  • Laetitia A, Fauchon M, Blanc N, Hauchard D, ArGall E. Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochem Anal. 2010;21:399–405. https://doi.org/10.1002/pca.1210
  • Balboa EM, Enma C, Moure A, Falqué E, Domínguez H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013;138:1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026
  • Rayorath P, Benkel B, Hodges DM, Allan-Wojtas P, MacKinnon S, Critchley AT, et al. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta. 2009;230:135–147. https://doi.org/10.1007/s00425-009-0920-8
  • Crouch IJ, van Staden J. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J Plant Physiol. 1991;137:319–322. https://doi.org/10.1016/S0176-1617(11)80138-0
  • Finnie JF, van Staden J. Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J Plant Physiol. 1985;120:215–222. https://doi.org/10.1016/S0176-1617(85)80108-5
  • Crouch IJ, van Staden J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol. 1992;4:291–296. https://doi.org/10.1007/BF02185785
  • Kumari R, Kaur I, Bhatnagar AK. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol. 2011;23:623–633. https://doi.org/10.1007/s10811-011-9651-x
  • Zodape ST, Gupta A, Bhandari SC. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J Sci Ind Res. 2011;70:215–219.
  • Stępowska A. Biostimulators in sweet pepper cultivation under covers. In: Dąbrowski ZT, editor. Biostimulators in modern agriculture: solanaceous crops. Warsaw: The Editorial House Wieś Jutra; 2008. p. 26–44.
  • Hernández-Herrera RM, Virgen-Calleros G, Ruiz-López M, Zañudo-Hernández J, Délano-Frier JP, Sánchez-Hernández C. Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. J Appl Phycol. 2014;26(3):1607–1614. https://doi.org/10.1007/s10811-013-0193-2
  • Koyama R, Bettoni MM, Roder C, de Assis AM, Roberto SR, Mogor AF. Seaweed extract of Ascophyllum nodosum (L.) Le Jolis on tomato yield and vegetative development. Amazonian Journal of Agricultural and Environmental Sciences. 2012;55(4):282–287. https://doi.org/10.4322/rca.2012.067
  • Kossak K, Dyki B. Effecs of biostimulators on cultivation of Alboney F1 greenhouse tomato. In: Dąbrowski ZT, editor. Biostimulators in modern agriculture: solanaceous crops. Warsaw: The Editorial House Wieś Jutra; 2008. p. 13–20.
  • Marhoon IA, Abbas MK. Effect of foliar application of seaweed extract and amino acids on some vegetative and anatomical characters of two sweet pepper (Capsicum annuum L.) cultivars. International Journal of Research Studies in Agricultural Sciences. 2015;1:35–44.
  • Hernández-Herrera RM, Santacruz-Ruvalcaba F, Zañudo-Hernández J, Hernández-Carmona G. Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. J Appl Phycol. 2016;28:2549–2560. https://doi.org/10.1007/s10811-015-0781-4
  • Abd El-Gawad HG, Osman HS. Effect of exogenous application of boric acid and seaweed extract on growth, biochemical content and yield of eggplant. Journal of Horticultural Science and Ornamental Plants. 2014;6:133–143.
  • Dobromilska R, Gubarewicz K. Influence of Bio-algeen S-90 on the yield and quality of small-sized tomato. In: Dąbrowski ZT, editor. Biostimulators in modern agriculture: solanaceous crops. Warsaw: The Editorial House Wieś Jutra; 2008. p. 7–12.
  • Carrasco-Gil S, Hernandez-Apaolaza L, Lucena JJ. Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regul. 2018;86(3):401–411. https://doi.org/10.1007/s10725-018-0438-9
  • Manna D, Sarkar A, Maity TK. Impact of biozyme on growth, yield and quality of chilli (Capsicum annuum L.). Journal of Crop and Weed. 2012;8:40–43.
  • Goñi O, Quille P, O’Connell S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem. 2018;126:63–73. https://doi.org/10.1016/j.plaphy.2018.02.024
  • Yildiztekin M, Tuna AL, Kaya C. Physiological effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biol Hung. 2018;69(3):325–335. https://doi.org/10.1556/018.68.2018.3.8
  • Featonby-Smith BC, van Staden J. The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci Hortic. 1983;20:137–146. https://doi.org/10.1016/0304-4238(83)90134-6
  • Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS. Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl Soil Ecol. 2012;56:58–62. https://doi.org/10.1016/j.apsoil.2012.02.008
  • Sultana V, Baloch GN, Ara J, Ehteshamul-Haque S, Tariq RM, Athar M. Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual. 2012;84(2):162.
  • Lizzi Y, Coulomb C, Polian C, Coulomb PJ, Coulomb PO. Seaweed and mildew: what does the future hold? Phytoma. 1998;508:29–30.
  • Rekanovic E, Potocnik I, Milijasevic-Marcic S, Stepanovic M, Todorovic B, Mihajlovic M. Efficacy of seaweed concentrate from Ecklonia maxima (Osbeck) and conventional fungicides in the control of Verticillium wilt of pepper. Pesticidi i Fitomedicina. 2010;25(4):319–324. https://doi.org/10.2298/PIF1004319R
  • Baloch GN, Tariq S, Ehteshamul-Haque S, Athar M, Sultana V, Ara J. Management of root diseases of eggplant and watermelon with the application of asafoetida and seaweeds. J Appl Bot Food Qual. 2013;86(1):138–142. https://doi.org/10.5073/JABFQ.2013.086.019
  • Arthur GD, Stirk WA, Van Staden J. Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S Afr J Bot. 2003;69:207–211. https://doi.org/10.1016/S0254-6299(15)30348-3
  • Ambroszczyk A, Cebula S, Sękara A. The effect of shoot training on field, fruit quality and leaf chemical composition of eggplant in greenhouse cultivation. Folia Hortic. 2008;20(2):3–15. https://doi.org/10.2478/fhort-2013-0109
  • Ramya SS, Vijayanand N, Rathinavel S. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. International Journal of Recycling of Organic Waste in Agriculture. 2015;4(3):167–173. https://doi.org/10.1007/s40093-015-0096-0
  • Eris A, Sivritepe HÖ, Sivritepe N. The effect of seaweed (Ascophyllum nodosum) extract on yield and quality criteria in peppers. Acta Hortic. 1995;412:185–192. https://doi.org/10.17660/ActaHortic.1995.412.21
  • Tarantino E, Disciglio G, Frabboni L, Libutti A, Gatta G, Gagliaridi A, et al. Effects of biostimulant application on quali-quantitative characteristics of cauliflower, pepper and fennel crops under organic and conventional fertilization. International Journal of Agricultural, Biosystems Science and Engineering. 2015;9(7):734–738.
  • Pohl A, Grabowska A, Kalisz A, Sękara A. Preliminary screening of biostimulative effects of Göemar BM-86 on eggplant cultivars grown under field conditions in Poland. Acta Agrobot. 2018;71(4):1752. https://doi.org/10.5586/aa.1752
  • Ofosu-Anim J, Blay ET, Bening L. Effect of Biozyme T.F. on yield and quality of tomato (Lycopersicon esculentum). Ghana Journal of Agricultural Science. 2007;40:113–117. https://doi.org/10.4314/gjas.v40i1.2160
  • Reeta K, Inderdeep K, Bhatnagar AK. Effect of seaweed liquid fertilizer on growth and yield of Lycopersicon esculentum. In: XX International Seaweed Symposium; 2010 Feb 22–26; Ensenada Baja California, Mexico. [publication place unknown]: [publisher unknown]; 2010. p. 92.
  • Helaly MN, Arafa AA, Ibrahim HM, Ghoniem KH. Improving growth and productivity of tomato by some biostimulants and micronutrients with or without mulching. Journal of Phytology. 2018;10:15–23. https://doi.org/10.25081/jp.2018.v10.3400
  • Dobromilska R, Mikiciuk M, Gubarewicz K. Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio-algeen S-90 preparation. J Elem. 2008;13:491–499.
  • Kowalczyk K, Zielony T. Effect of goteo treatment on yield and fruit quality of tomato grown on rockwool. In: Dąbrowski ZT, editor. Biostimulators in modern agriculture: solanaceous crops. Warsaw: The Editorial House Wieś Jutra; 2008. p. 21–26.
  • Grabowska A, Kunicki E, Sękara A, Kalisz A, Jezdinský A, Gintrowicz K. The effect of biostimulants on the quality parameters of tomato grown for the processing industry. Agrochimica. 2015;59(3):203–217. https://doi.org/10.12871/0021857201531
  • Bozorgi HR. Effects of foliar spraying with marine plant Ascophyllum nodosum extract and nano iron chelate fertilizer on fruit yield and several attributes of eggplant (Solanum melongena L.). ARPN Journal of Agricultural and Biological Science. 2012;7:357–362.
  • Hernández-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol. 2014;26(1):619–628. https://doi.org/10.1007/s10811-013-0078-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f89de50c-7742-489b-9d64-6041035a9610
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.