PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |

Tytuł artykułu

Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, the toxic effect of copper oxide nanoparticles (CuONPs) at the physiological and molecular level was investigated in mung bean (Vigna radiata L.) plants. The seedlings were grown in half strength Murashige and Skoog medium supplemented with different concentrations of CuONPs (0, 20, 50, 100, 200 and 500 mg l⁻¹) for 21 days under controlled growth conditions. Exposure to 200 and 500 mg l⁻¹ of CuONPs significantly reduced shoot length and biomass. Significant reduction in root length and biomass was observed upon exposure to all concentrations of CuONPs. Retardation of primary and lateral root growth was observed upon exposure to different concentrations of CuONPs. At 100, 200 and 500 mg l⁻¹ of CuONPs exposure, the total chlorophyll contents reduced significantly. Exposure to different concentrations of CuONPs has not resulted in any significant change in carotenoid contents. The proline content significantly increased upon exposure to 100, 200 and 500 mg l⁻¹ of CuONPs. Significant increase in hydrogen peroxide content and lipid peroxidation was observed in roots upon exposure to 20, 50, 100, 200 and 500 mg l⁻¹ of CuONPs. Histochemical staining with nitroblue tetrazolium and treatment with 30 -(p-hydroxyphenyl) fluorescein indicated a concentration-dependent increase in reactive oxygen species generation in roots. Exposure to CuONPs has resulted in excess lignification of roots cells as revealed by phloroglucionol-HCl staining. Gene expression analysis using real-time polymerase chain reaction showed modulations in the expression of CuZn superoxide dismutase, catalase and ascorbate peroxidase genes in roots of CuONPs exposed plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

11

Opis fizyczny

p.2947-2958,fig.,ref.

Twórcy

  • Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul, 143-701, South Korea
autor
  • Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul, 143-701, South Korea
autor
  • Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul, 143-701, South Korea

Bibliografia

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO₂ to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468
  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584
  • Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116
  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in waste water and waste water sludge-evidence and impacts. Waste Manage 30:504–520
  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol 59:411–416
  • Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46:12452–12458
  • Chiang HH, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis during development and in response to desiccation. Plant Cell Environ 18:1280–1290
  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125
  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photooxidative stress responses in leaves. J Ex Bot 53:1249–1254
  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2010) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Hu X, Cook S, Wang P, Hwang HM (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072
  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732
  • Kováčik J, Grúz J, Klejdus B, Štorka F, Marchiosid R, Ferrarese-Filhod O (2010) Lignification and related parameters in copperexposed Matricaria chamomilla roots: role of H₂O₂ and NO in this process. Plant Sci 179:383–389
  • Kwasniewskia M, Chwialkowska K, Kwasniewska J, Kusak J, Siwinski K, Szarejko I (2013) Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J Plant Physiol 170:185–195
  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants Mung bean (Phaseolus radiatus) and Wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921
  • Lee CW, Mahendra S, Zodrow KLID, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675
  • Lequeux H, Hermans C, Lutts S, Nathalie V (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods in enzymology, vol 148. Academic Press, Waltham, pp 350–382
  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585
  • Lin CC, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861
  • Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY (2012) Characterization of a novel Y2 K-type dehydrin VrDhn1 from Vigna radiata. Plant Cell Physiol 53:930–942
  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sus Chem Eng 1:768–778
  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532
  • Melegari SP, Perreault F, Popovic RHRC, Radovan Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142–143:431–440
  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion and molecular level changes. Environ Sci Pollut Res. doi:10.1007/s11356-014-3210-3
  • OECD (organization for economic cooperation and development) (1984) Terrestrial plants, growth test. OECD guidelines for testing of chemicals. No. 208. OECD, Paris
  • Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442
  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11
  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 27:3485–3498
  • Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140
  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915
  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47
  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicol 8:179–188
  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441
  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575
  • Young AJ (1991) The protective role of carotenoids in higher plants. Physiol Plant 83:702–708

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e42cdb5d-f54c-4378-9469-04fe150fa91e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.