EN
In this study, the toxic effect of copper oxide nanoparticles (CuONPs) at the physiological and molecular level was investigated in mung bean (Vigna radiata L.) plants. The seedlings were grown in half strength Murashige and Skoog medium supplemented with different concentrations of CuONPs (0, 20, 50, 100, 200 and 500 mg l⁻¹) for 21 days under controlled growth conditions. Exposure to 200 and 500 mg l⁻¹ of CuONPs significantly reduced shoot length and biomass. Significant reduction in root length and biomass was observed upon exposure to all concentrations of CuONPs. Retardation of primary and lateral root growth was observed upon exposure to different concentrations of CuONPs. At 100, 200 and 500 mg l⁻¹ of CuONPs exposure, the total chlorophyll contents reduced significantly. Exposure to different concentrations of CuONPs has not resulted in any significant change in carotenoid contents. The proline content significantly increased upon exposure to 100, 200 and 500 mg l⁻¹ of CuONPs. Significant increase in hydrogen peroxide content and lipid peroxidation was observed in roots upon exposure to 20, 50, 100, 200 and 500 mg l⁻¹ of CuONPs. Histochemical staining with nitroblue tetrazolium and treatment with 30 -(p-hydroxyphenyl) fluorescein indicated a concentration-dependent increase in reactive oxygen species generation in roots. Exposure to CuONPs has resulted in excess lignification of roots cells as revealed by phloroglucionol-HCl staining. Gene expression analysis using real-time polymerase chain reaction showed modulations in the expression of CuZn superoxide dismutase, catalase and ascorbate peroxidase genes in roots of CuONPs exposed plants.