PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 1 |

Tytuł artykułu

The role of cytoskeleton in stomata functioning

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The main question in this review is of whether and how the cytoskeleton of guard cells is involved in stomata movements. The main function of stomata is the regulation of the rate of gas exchange between the plant environment and underlying plant tissues. As a result of special morphology and anatomy GCs form the stomatal pore. It can open or close in a controlled manner via internal or external signal-induced changes in GCs turgor pressure, volume and shape. The mechanism of stomata movement is a complex process. A network of actin microfilaments and microtubules, dynamic polymers collectively known as the cytoskeleton forms protein fibril systems in GCs. CT elements are dynamic structures, interconnected to different cell structures. The organization of CT during morphogenesis of stomata is very important in establishing the size and shape of GCs. It is well documented that AFs and MTs are involved in stomata movements and can modify the ability of GCs to respond to environmental and hormonal stimuli. Data gathered clearly suggest that the organization of CT elements is not a direct effect of stomata movements. Several investigation procedures for study of the CT role in stomata functioning, including GCs treatment with anti-CT drugs (disrupters or stabilizers), have been analyzed and discussed in this review but the question of what role AFs and MTs play in stomata movements and how they work still remains open. The availability of new CT visualization techniques and the usage of mutants to study this problem is a good perspective for further research.

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.59-79,fig.,ref.

Twórcy

  • Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Assmann S.M. 1993. Signal transductioninguardcells. Annu. Rev. Cell Biol., 9: 345-375.
  • Assmann S.M., Baskin T. 1998. The function of guard cells does not require an intact array of cortical microtubules. J. Exp. Bot., 49: 163-170.
  • Baluśka F., Hlavacka A., Samaj J., Palme K., Robinson D.G., Matoh T., McCrudy D.W., Menzel D., Volkmann D. 2002. F-actin dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. PlantPhysiol., 130: 422-452.
  • Baluśka F., Samaj J., Wojtaszek P., Volkmann D., Menzel D. 2003. Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol., 133: 482-491.
  • Baskin T.I. 2001. On the alignment of cellulose microfibrils by cortical microtubules - review and a model. Protoplasma, 215: 150-171.
  • Blatt M.R. 2000. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol., 16: 221-241.
  • Brandizzi F., Saint-Jore C., Moore I., Hawes Ch. 2003. The relationship between endomembranes and the plant cytoskeleton. Cell Biol. Int., 27: 177-179.
  • Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N., Dellaporta S.L., Tonelli Ch. 2005. A guard-cell-specific MYB transcription factor reguiates stomatal movements and plant drought tolerance. Curr. Biol., 15: 1196-1200.
  • Davey J., Lord M. 2003. Essential Cell Biology, vol. 1: Cell structure: A practical Approach. Oxford University Press: 365-387.
  • Dixit R., Cyr R. 2004. The cortical microtubule array: from dy namics to or ga niza tion. Plant Cell, 16: 2546-2552.
  • Downing K.H. 2000. Structural basis for the interaction of tubulin with proieins and drugs that affect micro i tubule dynamics. Annu. Rev. Cell Dev. Biol., 16: 89-111.
  • Drabak B.K., Franklin-Tong V.E., Staiger C.J. 2004. The role of the actin cytoskeleton in plant cell signaling. New Phytol., 163: 13-30.
  • Emi T., Kinoshita T., Sakamoto K., Mineyuki Y., Shimazaki K. 2005. Isolation of a proiein inieracting with Vfphot1a in guard cells of Vicia faba. Plant Physiol., 138: 1615-1626.
  • Eun S-O., Lee Y. 1997. Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol.,115: 1491-1498.
  • Eun S-O., Lee Y. 2000. Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells. Planta, 210: 1014-1017.
  • Eun S-O., Bae S-H., Lee Y. 2001. Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abil-1 mutantArabidopsis. Planta, 212: 466-469.
  • Fan L-M., Zhao Z., Assmann S.M. 2004. Guard cells: a dynamic signaling model. Curr. Opin. Plant Biol., 7: 537-546.
  • Franks P.J., Buckley T.N., Shope J.C., Mott K.A. 2001. Guard cell volume and pressure measured concurrently by confocal microscopy and the cell presiure probe. Plant Physiol., 125: 1577-1584.
  • Fukuda M., Hasezawa S., Asai N., Nakajima N., Kondo N. 1998. Dynamic organization of microtubules in guard cells of Vicia faba L. with diurnal cycle. Plant Cell Physiol., 39: 80-86.
  • Galatis B., Apostolakos P. 2004. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol., 161: 613-639.
  • Garcia-Mata C., Lamattina L. 2001.Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol., 126: 1196-1205.
  • Garcia-Mata C., Lamattina L. 2003. Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the misssing links? Trends Plant Sci., 8: 20-26.
  • Gerbeau P., Amodeo G., Henzler T., Santoni V., Ripoche P., Maurel Ch. 2002. The water permability of Arabidopsis plasma membrane is regulated by divalent cations and pH. The Plant J., 30: 71-81.
  • Hetherington A.M. 2001. Guard cell signaling. Cell, 107: 711-714.
  • Huang R-F., Wang X-C. 1997a. Roles of cytoplasmic microtubules in the regulation of stomatal movements. Acta Bot. Sin., 39: 253-258.
  • Huang R-F., Wang X-C. 1997b. changes in the orientation of cortical microtubules and their effects on stomata movements of Viciafaba L. Acta Bot. Sin., 39: 375-378.
  • Huang R-F., Wang X. C., Lou C. H. 2000. Cytoskeletal inhibitors suppress the stomatal opening of Viciafaba L. induced by fusicoccin and IAA. Plant Sci., 156: 65-71.
  • Hwang J-U., Suh S., Yi H., Kim J., Lee Y. 1997. Actin filaments modul ate both stomatal openi ng and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol., 115: 335-342.
  • Hwang J-U., Lee Y. 2001. Abscisic acid- induced actin reorganization in guard cells of Dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities. Plant Physiol., 125: 2120-2128.
  • Jiang C.J., Nakajima N., Kondo N. 1996. Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. Plant Cell Physiol., 37: 697-701.
  • Jones L., Milne J.L., Ashford D., McCann M.C., McQueen-Mason S.J. 2004. A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species. Planta, 221: 255-264.
  • Kaiser H., Kappen L. 2001. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in stomatal turgor mechanism. J. Exp. Bot., 52: 1303-1313.
  • Kim M., Hepler P.K., Eun S.-O, Ha K.S., Lee Y. 1995. Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Phy siol., 109: 1077-1084.
  • Klyachko N.L. 2003. Phytohormones and cytoskeleton. Russ. J. Plant Physiol., 50: 426-430.
  • Kost B., Matur J., Chua N-H. 1999. Cytoskeleton in plant development. Curr. Opin. Plant Biol., 2: 462-470.
  • Kost B., Spielhofer P., Chua N-H. 1998. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. The Plant J., 16: 393-401.
  • Kwak J.M., Murata Y., Baizabal-Aguirre, V.M., Merrill J., Wang M., Kemper A., Hawke S.D., Tallman G., Schroeder J.I. 2001. Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. Plant Physiol., 127: 473-485.
  • Lahav M., Abu-Abied M., Belausov E., Schwartz A., Sador E. 2004. Microtubules of guard cells are light sensitive. Plant Cell Physiol., 45: 573-582.
  • Lee H.J., Trucker E.B., Crain R.C., Lee Y. 1993. Stomatal openi ng is induced in epidermal peels of Commelina communis L. by GTP analogs or pertussis toxin. Plant Physiol., 102: 95-100.
  • Lemichez E., Wu Y., Sanchez J-P., Mettouchi A., Mathur J., Chua N-H. 2001. Inactivation of AtRac 1 by abscisic acid is essential for stomatal closure. Genes & Develop., 15: 1808-1816.
  • Liu K., Luan S. 1998. Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell, 10: 1957-1970.
  • Liang Y-K., Dubos Ch., Dodd I.C., Holroyd G.H., Hethretington A.M, Campbell M.M. 2005.
  • AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr. Biol., 15: 1201-1206.
  • Marcus A. I. 2002. Structural and mechanochemical microtubule-associated prot eins in plant cell funct ion. Ph.D., The Pennsylvania State University: 123.
  • Marcus A.I., Moore R.C., Cyr R.J. 2001. The role of microtubules in guard cell function. Am. J. Plant Physiol., 125: 387-395.
  • Mathur J. 2004. Cell shape development in plants. Trends in Plant Sci., 9: 583-590.
  • Mathur J., Hulskamp M. 2002. Microtubules and microfilaments in cell morphogenesis in higher plants. Curr. Biol., 12: 669-676.
  • Misteli T. 2001. The concept of self-organization in cellular architecture. J. Cell Biol., 155: 181-185.
  • Neill S., Desikan R., Hancock J. 2002a. Hydrogen peroxide signalling. Curr. Opin. Plant Biol., 5: 388-395.
  • Neill S., Desikan R., Clarke A., Hancock J.,T. 2002b. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol., 128:13-17.
  • Outlaw W.H. 2003. Integration of cellular and physio- logmal functions of guard cells. Crit. Rev. Plants Sci., 22: 503-529.
  • Śamaj J., Baluśka F., Voigt B., Schlicht M., Volkf mann D., Menzel D. 2004. Endocytosis, actin cyto- skeleton and signaling. Plant Physiol., 135: 1150-1161.
  • Śamaj J., Read N.,D., Volkmann D., Menzel D., Baluśka F. 2005. The endocytic network in plants. Trends Cell Biol., 15: 425-433.
  • Schroeder J.I., Allen G. J., Hugouvieux V., Kwak J. M., Waner D. 2001. Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52: 627-658.
  • Shope J.C., DeWald D.B., Mott K.A. 2003. Changes in surface area of intact guard cells are corretated with membrane internalization. Plant Physiol., 133: 1314-1321.
  • Somerville Ch., Bauer S., Brininstool G., Facette M., Hamann T., Milne J., Osborne E., Paredez A., Persson S., Raab T., Vorwerk S., Youngs H. 2004. Toward a systems approach to underttandtng plant cell walls. Sci., 306: 2206-2211.
  • Sonesson A. 1997. Plasma membrane/cytoskeleton interactions in plants. Doctoral Dissertation, Section of Plant Physiology, Lund University, Sweden: 19.
  • Staiger Ch. J. 2000. Signaling to the actin cytoskeleton in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51: 257-288.
  • Tyerman S.D., Niemietz C.M., Bramley H. 2002. Plant aquaporines: multifunctional water and solute channels with expanding roles. Plant Cell Environ., 25: 173-190.
  • Wang Y., Holroyd G., Hetherington A.M., Ng C.K. 2004. Seeing “cool” and “hot’’-infrared thermography as a tool for noninvasive, high-throughput screening pf Arabidopsis guard cell signalling mutants. J. Exp. Bot., 55: 1187-1193.
  • Wasteneys G.O., Galway M.E. 2003. Remodeling the cytoskeleton for growth and form: An Overview with some new views. Ann. Rev. Plant Biol., 54: 691-722.
  • Wasteneys G.O., Yang Z. 2004a. New views on the plant cytoskeleton. Plant Physiol., 136: 3884-3891.
  • Wasteneys G.O., Yang Z. 2004b. The cytoskeleton becomes multidisciplinary. Plant Physiol., 136: 3853-3854.
  • Willmer C., Fricker M. 1996. Stomata. Chapman & Hall 2nd ed. Yu R., Huang R.F., Wang X.C., Yuan M., 2001. Microtubule dynami cs are involved in stomatal movement of Vicia faba L. Protoplasma, 21: 113-118.
  • Yu Q., Hlavacka A., Matoh T., Volkmann D., Menzel D., Goldbach H. E., Baluśka F. 2002. Short-term boron depreivatio inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol., 130: 415-422.
  • Vavasseur A., Raghavendra S.A., 2005. Guard cell metabolism and CO2 sensing. New Phytol., 165: 665-682.
  • Volkmann D., Baluśka F., 1999. The actin cyto- skeleton in plants: from transport networks to signaling networks. Micros. Res. Tech., 47: 135-154.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ae3638cb-851d-498a-b174-a69ef3835e75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.