EN
The main question in this review is of whether and how the cytoskeleton of guard cells is involved in stomata movements. The main function of stomata is the regulation of the rate of gas exchange between the plant environment and underlying plant tissues. As a result of special morphology and anatomy GCs form the stomatal pore. It can open or close in a controlled manner via internal or external signal-induced changes in GCs turgor pressure, volume and shape. The mechanism of stomata movement is a complex process. A network of actin microfilaments and microtubules, dynamic polymers collectively known as the cytoskeleton forms protein fibril systems in GCs. CT elements are dynamic structures, interconnected to different cell structures. The organization of CT during morphogenesis of stomata is very important in establishing the size and shape of GCs. It is well documented that AFs and MTs are involved in stomata movements and can modify the ability of GCs to respond to environmental and hormonal stimuli. Data gathered clearly suggest that the organization of CT elements is not a direct effect of stomata movements. Several investigation procedures for study of the CT role in stomata functioning, including GCs treatment with anti-CT drugs (disrupters or stabilizers), have been analyzed and discussed in this review but the question of what role AFs and MTs play in stomata movements and how they work still remains open. The availability of new CT visualization techniques and the usage of mutants to study this problem is a good perspective for further research.