PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 11 |
Tytuł artykułu

Identification and characterization of differentially expressed microRNAs in response to Rhizoctonia solani in maize

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MicroRNAs (miRNAs) are a set of small, noncoding RNAs that negatively and post-transcriptionally mediate their respective target mRNAs by directing the target mRNA cleavage or translational repression. Plant miRNAs have been involved in developmental processes and adaption to biotic and abiotic stresses in their environment. The banded leaf and sheath blight (BLSB) caused by Rhizoctonia solani is extremely harmful to maize. To investigate the functions of miRNAs under R. solani inoculation, miRNA expression in R. solani infected maize (Zea mays L.) was profiled using deep sequencing. In total, 41 significantly differentially expressed known miRNAs and 39 novel R. solani-responsive miRNAs were identified, of which 9 identified miRNAs were further validated by qRT-PCR, and 2 important miRNAs were analyzed by in situ hybridization. Target genes were also predicted for these R. solani-responsive miRNAs; most of these putative target genes encoded transcription factors and proteins associated with metabolic processes or stress responses. In addition, the mRNA expression levels of several target genes that negatively correlated with the levels of corresponding miRNAs under R. solani inoculation were validated by qRT-PCR. These findings hypothesized that these miRNAs play an important role in R. solani resistance in maize, highlighting novel molecular mechanisms of R. solani resistance in plants.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
37
Numer
11
Opis fizyczny
Article: 250 [17 p.], fig.,ref.
Twórcy
autor
  • Drug Discovery Research Center of Sichuan Medical University, Luzhou, 646000, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
autor
  • Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
  • Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
Bibliografia
  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283(23):15932–15945
  • Aiguo Y, Guangtang P, Huazhi Y (2003) Evaluating resistance of inbred lines of corn to maize sheath blight and screening of resistance resources. Plant Prot 29(1):25–28
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402
  • Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112
  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell Online 15(11):2730–2741
  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218(5):683–692
  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101(31):11511–11516
  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568
  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54(5):876–887
  • Carling D, Kuninaga S, Brainard K (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92(1):43–50
  • Chen J, Tang C, Xue C, Niu X, Song Z (2000) On penetration process of sheath blight pathogen in maize. J Shenyang Agri Univ 31(5):503–506
  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012) Genomewide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235(5):873–883
  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell 18(2):412–421
  • Chung W, Huang J, Huang H (2005) Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32(2):287–294
  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20(22):3084–3088
  • Debigaré R, Price SR (2003) Proteolysis, the ubiquitin-proteasome system, and renal diseases. Am J Physiol Renal Physiol 285(1):F1–F8
  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64(11):3077–3086
  • Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138(2):778–789
  • Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13(12):497–498
  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38 (Web Server issue):W64-70
  • Gao J, Chen Z, Luo M, Peng H, Lin H, Qin C, Yuan G, Shen Y, Ding H, Zhao M, Pan G, Zhang Z (2014) Genome expression profile analysis of the maize sheath in response to inoculation to R. solani. Mol Biol Rep 41(4):2471–2483
  • Gonzalez-Vera AD, Bernardes-de-Assis J, Zala M, McDonald BA, Correa-Victoria F, Graterol-Matute EJ, Ceresini PC (2010) Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America.Phytopathology 100(2):172–182
  • Guerrero-González M, Rodríguez-Kessler M, Rodríguez-Guerra R, González-Chavira M, Simpson J, Sanchez F, Jiménez-Bremont J (2011) Differential expression of Phaseolus vulgaris genes induced during the interaction with Rhizoctonia solani. Plant Cell Rep 30(8):1465–1473
  • Huang M, Tan J, Yang J, Yang K (2007) Research advance on Banded Leaf and Sheath Blight of maize. Southwest China J Agri Sci 20(2):209–213
  • Javelle M, Timmermans MC (2012) In situ localization of small RNAs in plants by using LNA probes. Nat Protoc 7(3):533–541
  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799
  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53
  • Jung WJ, Mabood F, Smith DL (2011) Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani. J Microbiol Biotechnol 21(4):379–386
  • Khraiwesh B, Pugalenthi G, Fedoroff NV (2013) Identification and Analysis of Red Sea Mangrove (Avicennia marina) microRNAs by High-Throughput Sequencing and Their Association with Stress Responses. PLoS One 8(4):e60774
  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8(1):38–44
  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating micro-RNA annotation and deep-sequencing data. Nucleic Acids Research 39 (Database issue):D152-157
  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305
  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714
  • Li L, Yong Yi M, ZhiMing Z, PengFei L, GuangTang P, MaoJun Z (2009) Functional effects of different defense enzymes on banded leaf and sheath blight of maize. Journal of Maize Sciences 17 (3):99–102&106
  • Li Y, Fu Y, Ji L, Wu C, Zheng C (2010a) Characterization and expression analysis of the Arabidopsis mir169 family. Plant Sci 178(3):271–280
  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou J-M (2010b) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222–2231
  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109(5):1790–1795
  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843
  • Liu L, Zhang Z, Zhao M, Wang J, Lin H, Shen Y, Pan G (2011) Molecular cloning and characterization of pathogenesis-related protein 5 in Zea mays and its antifungal activity against Rhizoctonia solani. Afr J Biotechnol 10(83):19286–19293
  • Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 7(6):e39786
  • Liu H, Qin C, Chen Z, Zuo T, Yang X, Zhou H, Xu M, Cao S, Shen Y, Lin H, He X, Zhang Y, Li L, Ding H, Lubberstedt T, Zhang Z, Pan G (2014) Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genom 15:25
  • Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51(6):1077–1098
  • Luo M, Gao J, Peng H, Pan GT, Zhang ZM (2014) MiR393-targeted TIR1-like (F-box) gene in response to inoculation to R. solani in Zea mays. Acta Physiologiae Plantarum 36(6):1283–1291
  • Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61(14):4011–4019
  • Mendoza-Soto AB, Sanchez F, Hernandez G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439
  • Okubara PA, Steber CM, DeMacon VL, Walter NL, Paulitz TC, Kidwell KK (2009) Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae. Theor Appl Genet 119(2):293–303
  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99(6):1067–1081
  • Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel ‘‘gene expression’s C T difference’’ formula. J Mol Med 84(11):901–910
  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527
  • Shen Y, Jiang Z, Lu S, Lin H, Gao S, Peng H, Yuan G, Liu L, Zhang Z, Zhao M, Rong T, Pan G (2013) Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun 441(2):425–430
  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genom 14(1):233
  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu J-K, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom 9(1):160
  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019
  • Sunkar R, Girke T, Zhu J-K (2005) Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res 33(14):4443–4454
  • Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell Online 18(8):2051–2065
  • Thiebaut F, Rojas CA, Grativol C, Motta MR, Vieira T, Regulski M, Martienssen RA, Farinelli L, Hemerly AS, Ferreira PC (2014)
  • Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genom 15:766
  • Wang CY, Chen YQ, Liu Q (2011) Sculpting the meristem: the roles of miRNAs in plant stem cells. Biochem Biophys Res Commun 409(3):363–366
  • Yan J, Zheng J, Ye H (2008) Damage and yield loss in corn caused by corn sheath blight. Journal of Maize Sciences 16
  • Yang ZM, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics Integrated Biometal Sci 5(9):1184–1190
  • Yang AG, Pan GT, Ye HZ, Tang L, Rong TZ (2003) Evaluating resistance of inbred lines of corn to maize sheath blight and screening of resistance resources. Plant Prot 29(1):25–28
  • Zeng X, Yi Y, Liu HL, Zhang ZM, Zhao MJ, pAN GT (2011) Analysis of differential protein induced by Rhizoctonia solani Kühn in different resistant maize inbred lines. J Agric Biotechnol 19(2):250–257
  • Zhang Z, Zhao M, Ma Y (2006) Advances in the Research of SSH on Disease-resistance Gene Expression of Maize. J Maize Sci 14(3):42–45
  • Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5(11):e1000716
  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398(3):355–360
  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33(2):403–409
  • Zhang Z, Liu L, Lin H, Yuan G, Zeng X, Shen Y, Zhao M, Zhao Q, Pan G (2012) Identification of genes differentially expressed in maize (Zea mays L.) during Rhizoctonia Solani Kühn infection by suppression subtractive hybridization. Afr J Biotechnol 11(12):2827–2838
  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190(4):906–915
  • Zhao JP, Jiang XL, Zhang BY, Su XH (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7(9):e44968
  • Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Commun 4:1424
  • Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X (2010) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Frontiers in Biology 5 (1):67–90
  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613
  • Zuo S, Yin Y, Pan C, Chen Z, Zhang Y, Gu S, Zhu L, Pan X (2013) Fine mapping of qSB-11(LE), the QTL that confers partial resistance to rice sheath blight. TAG 126(5):1257–1272
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-67db626f-73c6-45e4-a4d9-2d46ac09c36b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.