PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 2(17) |

Tytuł artykułu

Nanocebulki węglowe oraz ich potencjalne zastosowanie w biomedycynie

Treść / Zawartość

Warianty tytułu

EN
Carbon nano-onions and their biomedical applications

Języki publikacji

PL

Abstrakty

PL
Nanocebulki węglowe (Carbon Nano-Onions – CNOs) zbudowane są z zamkniętych sferycznie monowarstw węglowych skupionych wokół pustego rdzenia – fulerenu C60. Dotychczasowe badania dowiodły, iż CNOs wykazują lepsze właściwości niż pozostałe struktury węglowe. Duży stosunek powierzchni do objętości, niska gęstość oraz wielowarstwowa morfologia grafitowa umożliwiają wiele zastosowań, m.in. w superkondensatorach, bateriach litowo-jonowych czy układach elektromagnetycznych. Największe zainteresowanie wzbudza brak ich toksyczności, co predysponuje CNOs do odgrywania ważnej roli w nanomedycynie lub biotechnologii. Nanocebulki mogą być wykorzystane jako: materiał kontrastowy umożliwiający fluoroscencyjne obrazowanie żywych organizmów, do budowy bioczujników, a także jako nanoplatforma do unieruchomienia bądź transportu substancji aktywnych. W pracy przedstawiono obecny stan wiedzy na temat zastosowania wielościennych fulerenów w diagnozie biomedycznej oraz innych gałęziach biotechnologicznych.
EN
Carbon nano-onions (CNOs), also known as multilayer fullerenes, are spherical structures that consist of a hollow spherical fullerene core surrounded by concentric graphene layers with the increasing diameter. CNOs represent one of the most interesting forms of carbon, mainly due to their 0-D structure, small diameter, high electrical conductivity, and easy dispersion. Carbon nano-onions could be easily modified to other form, which offers a lot of applicable opportunity such as energy storage devices, material for supercapacitor electrodes, but the most important applications are connected with biotechnology and nanomedicine. The CNOs could be served as a highly-fluorescent bioimaging agent, drug delivery and biosensors. Therefore, the small size of CNO and non-toxicity, make it possible to use them in in vitro and in vivo studies. The CNOs show good biocompatibility in the wide range of the concentrations.

Wydawca

-

Rocznik

Numer

Opis fizyczny

s.9-21,rys.,fot.,bibliogr.

Twórcy

  • Uniwersytet w Białymstoku, Białystok
autor
  • Uniwersytet w Białymstoku, Białystok
autor
  • Uniwersytet w Białymstoku, Białystok
autor
  • Uniwersytet w Białymstoku, Białystok

Bibliografia

  • Al-Jishi R., Dresselhaus G., 1982, Lattice-dynamical model for graphite, Phys. Rev. B, 26, s. 4514-4522.
  • Bacon R., 1960, Growth, Structure, and Properties of Graphite Whiskers, J. Appl. Phys. 31, 283-290.
  • Bartelmess J., De Luca E., Signorelli A., Baldrighi M., Becce M., Brescia R., Nardone V., Parisini E., Echegoyen L., Pompa P.P., Giordani S., 2014, Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging, Nanoscale, 6, s. 13761-13769.
  • Bartelmess J., Giordani S., 2014, Carbon nano-onions (multi-layer fullerenes): chemistry and applications, Beilstein J. Nanotechnol., 5, s. 1980-1998.
  • Bates K.R., Scuseria G.E., 1998, Why are buckyonions round?, Theor. Chem. Acc., 99, s. 29-33.
  • Borgohain R., Li J., Selegue J.P., Cheng Y.-T., 2012, Electrochemical study of functionalized carbon nano-onions for high-performance supercapacitor electrodes, J. Phys. Chem. C, 116, s. 15068-15075.
  • Breczko J., Płońska-Brzezińska M.E., Echegoyen L., 2012, Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite, Electrochimica Acta, 72, s. 61-67.
  • Cabioc’h T., Kharbach A., Le Roy A., Rivière J.P., 1998, Fourier transform infra-red characterization of carbon onions produced by carbon-ion implantation, Chem. Phys. Lett., 285, s. 216-220.
  • Chen X.H., Deng F.M., Wang J.X., Yang H.S., Wu G.T., Zhang X.B., Peng J.C., Li W.Z., 2001, New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition, Chem. Phys. Lett., 336, s. 201-204.
  • Dełeńko K., Hyjek M., Kozłowska M., Sadowski M., Kołowerzo A., Bednarska-Kozakiewicz E., 2013, Techniki bioobrazowania na poziomie komórkowym metody in situ – część I, Postępy Biol. Komórki, 40.
  • Du J., Wang S., You H., Zhao X., 2013, Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review, Environ. Toxicol. Pharmacol., 36, 451-462.
  • Dubey P., Tripathi K.M., Sonkar S.K., 2014, Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam, RSC Adv., 4, s. 5838.
  • Fan J.-C., Sung H.-H., Lin C.-R., Lai M.-H., 2012, The production of onion-like carbon nanoparticles by heating carbon in a liquid alcohol, J. Mater. Chem., 22, s. 9794.
  • Garcia-Martin T., Rincon-Arevalo P., Campos-Martin G., 2013, Method to obtain carbon nano-onions by pyrolisys of propane, Cent. Eur. J. Phys., 11, 1548-1558.
  • Ghosh M., Sonkar S.K., Saxena M., Sarkar S., 2011, Carbon nano-onions for imaging the life cycle of drosophila melanogaster, Small, 7, s. 3170-3177.
  • Guo J., Wang X., Xu B., 2009, One-step synthesis of carbon-onion-supported platinum nanoparticles by arc discharge in an aqueous solution, Mater. Chem. Phys., 113, s. 179-182.
  • Han F.-D., Yao B., Bai Y.-J., 2011, Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries, J. Phys. Chem. C, 115, s. 8923-8927.
  • Hu S., Bai P., Tian F., Cao S., Sun J., 2009, Hydrophilic carbon onions synthesized by millisecond pulsed laser irradiation, Carbon, 47, s. 876-883.
  • Huang J., Liu Y., Hou H., You T., 2008, Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode, Biosens. Bioelectron., 24, s. 632-637.
  • Joly-Pottuz L., Bucholz E.W., Matsumoto N., Phillpot S.R., Sinnott S.B., Ohmae N., Martin J.M., 2010, Friction properties of carbon nano-onions from experiment and computer simulations, Tribol. Lett., 37, s. 75-81.
  • Joly-Pottuz L., Matsumoto N., Kinoshita H., Vacher B., Belin M., Montagnac G., Martin J.M., Ohmae N., 2008, Diamond-derived carbon onions as lubricant additives, Tribol. Int., 41, s. 69-78.
  • Keller N., Maksimova N.I., Roddatis V.V., Schur M., Mestl G., Butenko Y.V., Kuznetsov V.L., Schlögl R., 2002, the catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene, Angew. Chem. Int. Ed., 41, 1885.
  • Kuznetsov V.L., Chuvilin A.L., Butenko Y.V., Mal’kov I.Y., Titov V.M., 1994, Onion-like carbon from ultra-disperse diamond, Chem. Phys. Lett., 222, s. 343-348.
  • Kuznetsov V., Moseenkov S., Ischenko A., Romanenko A., Buryakov T., Anikeeva O., Maksimenko S., Kuzhir P., Bychanok D., Gusinski A., Ruhavets O., Shenderova O., Lambin P., 2008, Controllable electromagnetic response of onion-like carbon based materials, Phys. Status Solidi B, 245,s. 2051-2054.
  • Lakowicz J.R., 2007, Principles of fluorescence spectroscopy, Springer Science & Business Media, New York.
  • Lian W., Song H., Chen X., Li L., Huo J., Zhao M., Wang G., 2008, The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000 °C using an iron catalyst, Carbon, 46, s. 525-530.
  • Łuszczyn J., Płońska-Brzezińska M.E., Palkar A., Dubis A.T., Simionescu A., Simionescu D.T., Kalska-Szostko B., Winkler K., Echegoyen L., 2010, Small noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules, Chem.– Eur. J., 16, s. 870-4880.
  • Maksimenko S.A., Rodionova V.N., Slepyan G.Y., Karpovich V.A., Shenderova O., Walsh J., Kuznetsov V.L., Mazov I.N., Moseenkov S.I., Okotrub A.V., Lambin P., 2007, Attenuation of electromagnetic waves in onion-like carbon composites, Diam. Relat. Mater., 16, s. 1231-1235.
  • Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L., 2004, Polyphenols: Food sources and bioavailability, Am. J. Clin. Nutr., 79, s. 727-747.
  • Marcu L., French P.M., Elson D.S., 2014, Fluorescence lifetime spectroscopy and imaging: principles and applications in biomedical diagnostics, CRC Press, Boca Raton.
  • Middleton E., Kandaswami C., Theoharides T.C., 2000, The effects of plant flavonoids on mammalian cells:Implications for inflammation, heart disease, and cancer, Pharmacol. Rev., 52, s. 673-751.
  • Niyogi S., Hamon M.A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M.E., Haddon R.C., 2002, Chemistry of single-walled carbon nanotubes, Acc. Chem. Res., 35, 1105-1113.
  • Palkar A., Melin F., Cardona C.M., Elliott B., Naskar A.K., Edie D.D., Kumbhar A., Echegoyen L., 2007, Reactivity differences between carbon nano onions (cnos) prepared by different methods, Chem. – Asian J., 2, s. 625-633.
  • Pech D., Brunet M., Durou H., Huang P., Mochalin,V., Gogotsi Y., Taberna P.-L., Simon P., 2010, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol., 5, s. 651-654.
  • Płońska-Brzezińska M.E., Bruś D.M., Breczko J., Echegoyen L., 2013a, Carbon nano-onions and biocompatible polymers for flavonoid incorporation, Chem. – Eur. J. 19, s. 5019-5024.
  • Płońska-Brzezińska M.E., Bruś D.M., Molina-Ontoria A., Echegoyen L., 2013b, Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes, RSC Adv., 3, s. 25891.
  • Płońska-Brzezińska M.E., Echegoyen L., 2013, Carbon nano-onions for supercapacitor electrodes: recent developments and applications, J. Mater. Chem. A 1, s. 13703-13714.
  • Płońska-Brzezińska M.E., Molina-Ontoria A., Echegoyen L., 2014, Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates, Carbon, 67, s. 304-317.
  • Poland C.A., Duffin R., Kinloch I., Maynard A., Wallace W.A.H., Seaton A., Stone V., Brown S., MacNee W., Donaldson K., 2008, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Immunol., 3, s. 423-428.
  • Rettenbacher A.S., Perpall M.W., Echegoyen L., Hudson J., Smith D.W., 2007, radical addition of a conjugated polymer to multilayer fullerenes (Carbon Nano-onions), Chem. Mater., 19, s. 1411-1417.
  • Sano N., Wang H., Alexandrou I., Chhowalla M., Teo K.B.K., Amaratunga G.A.J., Iimura K., 2002, Properties of carbon onions produced by an arc discharge in water, J. Appl. Phys., 92, s. 2783-2788.
  • Sano N., Wang H., Chhowalla M., Alexandrou I., Amaratunga G.A.J., 2001, Synthesis of carbon “onions” in water, Nature, 414, s. 506-507.
  • Schultz W., 2007, Multiple dopamine functions at different time courses, Annu Rev Neurosci., 30, 259-288.
  • Sęk S., Breczko J., Płońska-Brzezińska M.E., Wilczewska A.Z., Echegoyen L., 2013, STM-based molecular junction of carbon nano-onion, ChemPhysChem, 14, s. 96-100.
  • Shenderova O., Grishko V., Cunningham G., Moseenkov S., McGuire G., Kuznetsov V., 2008, Onion-like carbon for terahertz electromagnetic shielding, Diam. Relat. Mater., 17, s. 462-466.
  • Sonkar S.K., Ghosh M., Roy M., Begum A., Sarkar S., 2012, Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain—an in vivo study from unicellular e. coli to Multicellular C. elegans, Mater. Express, 2, s. 105-114.
  • Stochel G., Stasicka Z., Brindell M., Macyk W., Szacilowski K., 2009, Bioinorganic photochemistry, John Wiley & Sons, New York.
  • Su D., Maksimova N.I., Mestl G., Kuznetsov V.L., Keller V., Schlögl R., Keller N., 2007, Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon, Carbon, 45, s. 2145-2151.
  • Tomita S., Sakurai T., Ohta H., Fujii M., Hayashi S., 2001, Structure and electronic properties of carbon onions, J. Chem. Phys., 114, s. 7477.
  • Wang Y., Yan F., Liu S.W., Tan A.Y.S., Song H., Sun X.W., Yang H.Y., 2013, Onion-like carbon matrix supported Co3O4 nanocomposites: A highly reversible anode material for lithium ion batteries with excellent cycling stability, J. Mater. Chem. A, 1, s. 5212.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5bf45fac-6a84-4345-bd9b-031112de94e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.