EN
Nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) have essential physiological functions in plants. Their interactions in plants are not fully understood especially at the molecular level. In this study, we detected the physiological and molecular responses of rice plants at the vegetative growth phase to N, P, K, and Mg starvations. Deficiencies of N and P resulted in accumulation of soluble sugar and starch in the leaves. The root to shoot ratio increased under N and P deficiencies, but decreased under K and Mg deficiencies. In addition, deficiency of either K or Mg resulted in accumulation of the other cation in shoots. Moreover, K starvation decreased both K and soluble sugar contents in the roots pronouncedly. RT-PCR analysis showed that several sugar transporter genes in the leaves orchestrated with sugar accumulation induced by the nutrient shortages. Expression of a high affinity K transporter gene (OsHAK1) and a putative Mg transporter gene (OsMGT) showed opposite down- and up-regulation in the roots by K starvation. These findings suggest that deficiencies of the major nutrients suppressed the export of carbohydrates from source leaves. The regulated sugar and nutrient transporter genes investigated in this study could be used for elucidating the molecular mechanism of plants in their adaptation to varied nutrient supply.