Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 6 |
Tytuł artykułu

Enzymatic activity of soil after applying various waste organic materials, ash, and mineral fertilizers

Treść / Zawartość
Warianty tytułu
Języki publikacji
Our study involved a 4-year pot investigation of loamy sand soil to which waste organic materials, brown coal ash, and mineral fertilizers containing nitrogen, phosphorus, potassium, and magnesium (NPKMg) were applied. Maize was the tested plant material grown in this soil mixture. The aim of this investigation was to determine the levels of enzymatic activities of acid phosphatase (ACP), alkaline phosphatase (ALP), urease (URE), and soil dehydrogenases (SDH) in this soil treated with organic materials, ash, and mineral fertilizers. Organic materials and ash significantly affected enzymatic activity of the soil. Mineral fertilization increased activities of ACP and SDH accompanied by a decrease in ALP activity. Data thus indicate that treatment of soils with organic materials, ash, and fertilizers alters soil enzymatic activity and, subsequently, the potential growth of corn.
Słowa kluczowe
Opis fizyczny
  • Soil Science and Plant Nutrition Department, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
  • Soil Science and Plant Nutrition Department, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
  • 1. STEENWERTH K.L., DRENOVSKY R.E., LAMBERT J.J., KLUEPFEL D.A., SCOW K.M., SMART D.R. Soil morphology, depth, and grapevine root frequency influence microbial communities in a Pinot noir Vineyard. Soil Biol. Biochem. 40, 1330, 2008.
  • 2. SINGH D.K., KUMAR S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71, 412, 2008.
  • 3. DE BROUWERE K.D., HERTIGERS S., SMOLDERS E. Zinc toxicity on N2O reduction declines with time in laboratory spiked a oils and is undetectable in field contaminated soils. Soil Biol. Biochem. 39, 3167, 2007.
  • 4. MERTENS J., RUYTERS S., SPRINGAEL D., SMOLDERS E. Resistance and resilience of zinc tolerant nitrying communities is unaffected in long-term zinc contaminated soils. Soil Biol. Biochem. 39, 1828, 2007.
  • 5. OLIVEIRA A., PAMPULHA M.E. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Bios. Bioeng. 102, (3), 157, 2006.
  • 6. WYSZKOWSKA J., WYSZKOWSKI M. Activity of dehydrogenases, urease and phosphatases in soil polluted with petrol. J. Toxicol. Environ. Health. A 73, (17), 1202, 2010.
  • 7. WYSZKOWSKA J., KUCHARSKI J., LAJSZNER W. Effect of soil contamination with copper on its enzymatic activity. Pol. J. Environ. Stud. 14, (5), 119, 2005.
  • 8. WYSZKOWSKA J., KUCHARSKI M., KUCHARSKI J., BOROWIK A. Activity of dehydrogenases, catalase and urease in copper polluted soil. J. Elementol. 14, (3), 605, 2009.
  • 9. TABATABAI M. A. Soil enzymes. Amer. Soc. Agron., 14, 77, 1994.
  • 10. WIDMER F., RASCHE F., HARTMANN M., FLIESSBACH A. Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment. Appl. Soil Ecol. 33, 294, 2006.
  • 11. CHU H.Y., LIN X.G., TAKESHI F., MORIMOTO S. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39, 2971, 2007.
  • 12. PÉREZ-DE-MORA A., MADRID C.F., Amendments and plant cover influence on trace elements pools in a contaminated soil. Geoderma 139, 1, 2007.
  • 13. van HERWIJNEN R., HUTCHINGS T.R., AL-TABBAA A., MOFFAT A.J., JOHNS M.L., OUKI S.K. Remediation of metal contaminated soil with mineral-amended composts. Environ. Poll. 150, 347, 2007.
  • 14. KALEMBASA S., KUZIEMSKA B. Influence of waste organic materials on phosphatases activities in nickel-contaminated soils. Pol. J. Environ. Stud. Ser. Monographs HARD, 2, 83, 2010.
  • 15. XIE W., ZHOU J., WANG H., CHEN XN., LU Z., YU J., CHEN XG. Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agricult. Ecosyst. Environ. 129, 450, 2009.
  • 16. KALEMBASA S. Quick method of determination of organic carbon in soil. Pol. J. Soil Sci., 24, (1), 17, 1991.
  • 17. SCHINNER F., KLINGER R., KADELER E., MARGESIN R. Soil biological methods. Springer Labor, 2nd Ed pp. 389, 1993.
  • 18. TABATABAI M.A., BREMNER J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1, 301, 1969.
  • 19. HOFFMANN G., TEICHER K. Colorimetric method for the determination of the urease activity in soil. Zeit. Pflanzenernaehr. Dung. Bodenkunde., 95, 55, 1961.
  • 20. CASIDA L.E. Jr., KLEIN D.A., SANTORO T. Soil dehydrogenase activity. Soil Sci., 98, 371, 1964.
  • 21. KUCHARSKI J., BOROS E., WYSZKOWSKA J. Biochemical activity of nickel – contaminated soil. Pol. J. Environ. Stud. 18, (6), 1039, 2009.
  • 22. LAUBER C.I., HAMADY M., KNIGHT R., FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. App. Environ. Microbiol. 75, 5111, 2009.
  • 23. LI Y.T., ROULAND C., BENEDETTI M., LI F.B., PANDO A., LAVELLE P. Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol. Biochem. 41, 969, 2009.
  • 24. KALEMBASA S., KUZIEMSKA B. Effect of nickel contamination on soil enzymatic activity. Fres. Environ. Bull. 20, (7a), 1724, 2011.
  • 25. PIOTROWSKA A. Spatial variability of total and mineral nitrogen content and activities on the N-cycle enzymes in a luvisoil topsoil. Pol. J. Environ. Stud. 20, (6), 1565, 2011.
  • 26. GIL-SOTRES f., TRASAR-CEPEDA C., LEIROS M.C., SEOANE S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877, 2005.
  • 27. ACHUBA F.I., PERETIEMO-CLARKE B.O. Effect of spent engine oil on soil catalase and dehydrogenase activities. Int. Agrophysics 22, 1, 2008.
  • 28. BOROWSKA K., KOPER J. Dynamics of changes of selenium content in soil and red clover (Trifolium pretense L.) affected by long-term organic fertilization on the background of selected soil oxidoreductases. Pol. J. Environ. Stud. 20, (6), 1403, 2011.
  • 29. KUCHARSKI J., JASTRZĘBSKA E. Effect of heating oil on the activity of soil enzymes and the yield of yellow lupine. Plant Soil Environ. 52, (5), 220, 2006.
  • 30. KOPER J., PIOTROWSKA A., SIWIK-ZIOMEK A. Activity of dehydrogenases, invertase and rhodanase in forest rusty soil in the vicinity of “Anwil” nitrogen plant in Włocławek. Ecol. Chem. Eng., A 15, (3), 237, 2008.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.