PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | 70 | 3 |
Tytuł artykułu

Isolation and identification of polar auxin transport inhibitors from Saussurea costus and Atractylodes japonica

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Izolacja i identyfikacja inhibitorów polarnego transport auksyny z Saussurea costus i Atractylodes japonica
Języki publikacji
EN
Abstrakty
EN
An intensive survey of naturally-occurring regulators of polar auxin transport (PAT) was conducted in two oriental medicinal species from the Asteraceae, Saussurea costus and Atractylodes japonica, using the radish hypocotyl bioassay system and physicochemical analyses. Costunolide and santamarine were identified as well as dehydrocostus lactone from S. costus roots, and atractylenolide II and (+)-eudesma- 4(14),7(11)-dien-8-one from Atractylodes japonica rhizomes as physiologically novel compounds possessing inhibitory activities of PAT. Costunolide and santamarine showed ca. 40% inhibition of PAT in the radish hypocotyl segments at a dose of 2.5 μg/plant and 1 μg/plant, respectively. Inhibitory effects of atractylenolide II and (+)-eudesma-4(14),7(11)-dien-8-one were ca. 10 times lower than those of costunolide and santamarine. Structure–activity relationships and possible mechanisms to inhibit PAT are also discussed.
PL
Przeprowadzono przegląd naturalnie występujących regulatorów polarnego transportu auksyny w roślinach mających zastosowanie w medycynie orientalnej, Saussurea costus i Atractylodes japonica, stosując powszechnie uznany biotest hypokotyla rzodkiewki (Raphanus sativus L.) i analizy fizykochemiczne. Zidentyfikowano kostunolid i santamarynę jak również lakton dehydrokostusowy i atraktylenolid II i (+)-eudesma-4(14),7(11)-dien-8-on jako nowe związki mające fizjologiczne właściwości inhibitorów polarnego transportu auksyny, kolejno z korzeni Saussurea costus i kłączy Atractylodes japonica. Kostunolid i santamaryna wykazały w około 40% hamowanie polarnego transportu auksyny w segmentach hypokotyla rzodkiewki przy stężeniu 2.5 μg/roślinę i 1 μg/roślinę. Hamujące działanie atraktylenolidu II i (+)-eudesma-4(14),7(11)- -dien-8-onu było około 10 razy mniejsze niż kostunolidu i santamaryny w badanym procesie. W pracy przedyskutowano zależności między aktywnością a strukturą chemiczną w/w związków i możliwy mechanizm ich hamującego działania na polarny transport auksyny.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
70
Numer
3
Opis fizyczny
Article 1700 [8p.], fig.,ref.
Twórcy
Bibliografia
  • 1. Muday GK, Murphy AS. An emerging model of auxin transport regulation. Plant Cell. 2002;14:293–299. https://doi.org/10.1105/tpc.140230
  • 2. Scarpella E, Marcos D, Friml J, Berleth T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 2006;20:1015–1027. https://doi.org/10.1101/gad.1402406
  • 3. Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K, et al. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature. 2008;456:962–967. https://doi.org/10.1038/nature07409
  • 4. Ueda J, Miyamoto K, Uheda E, Oka M. Auxin transport and graviresponse in plants: relevance to ABC proteins, Biol Sci Space. 2011;25:69–75. https://doi.org/10.2187/bss.25.69
  • 5. Ueda J, Miyamoto K, Uheda E, Oka M, Yano S, Higashibata A, et al. Close relationships between polar auxin transport and graviresponse in plants. Plant Biol. 2014;16(1 suppl): 43–49. https://doi.org/10.1111/plb.12101
  • 6. Ueda J, Saniewski M, Miyamoto K. Auxins, one major plant hormone, in soil. In: Szajdak LW, editor. Bioactive compounds in agricultural soils. Cham: Springer; 2016. p. 175–206. https://doi.org/10.1007/978-3-319-43107-9_8
  • 7. Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015;27:20–32. https://doi.org/10.1105/tpc.114.134874
  • 8. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. Requirement of auxin polar transport system in early stage of Arabidopsis floral bud formation. Plant Cell. 1991;3:677–684. https://doi.org/10.1105/tpc.3.7.677
  • 9. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. https://doi.org/10.1038/nature02085
  • 10. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, et al. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001;126:524–535. https://doi.org/10.1104/pp.126.2.524
  • 11. Peer WA, Murphy AS. Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 2007;12:556–563. https://doi.org/10.1016/j.tplants.2007.10.003
  • 12. Arai T, Toda Y, Kato K, Miyamoto K, Hasegawa T, Yamada K, et al. Artabolide, a novel polar auxin transport inhibitor isolated from Artemisia absinthium. Tetrahedron. 2013;69:7001–7005. https://doi.org/10.1016/j.tet.2013.06.052
  • 13. Ueda J, Toda Y, Kato K, Kuroda Y, Arai T, Hasegawa T, et al. Identification of dehydrocostus lactone and 4-hydroxy-β-thujone as auxin polar transport inhibitors. Acta Physiol Plant. 2013;35:2251–2258. https://doi.org/10.1007/s11738/013-1261-6
  • 14. Yokota T, Murofushi N, Takahashi N. Extraction, purification, and identification. In: MacMillan J, editor. Hormonal regulation of development I. Berlin: Springer; 1980. p. 113–201. (Encyclopedia of Plant Physiology; vol 9).
  • 15. Fang F, Sang S, Chen KY, Gosslau A, Ho CT, Rosen RT. Isolation and identification of cytotoxic compounds from bay leaf (Laurus nobilis). Food Chem. 2005;93:497–501. https://doi.org/10.1016/j.foodchem.2004.10.029
  • 16. Chen LG, Jan YS, Tsai PW, Noimoto H, Michihara S, Myrayama C, et al. Antiinflammatory and antinociceptive constituents of Atractyloides japonica Koizumi. J Agric Food Chem. 2016;64:2254–2262. https://doi.org/10.1021/acs.jafc.5b05841
  • 17. Endo K, Hikino H. Sesquiterpenoids. LIV. Absolute configuration of eudesma-4(14),7(11)-dien-8-one. Bull Chem Soc Jpn. 1979;52:2439–3440. https://doi.org/10.1246/bcsj.52.2439
  • 18. Paul A, Bawdekar AS, Joshi RS, Somasekar Rao A, Kelkar GR, Bhattacharyya SC. Terpenoids XX: examination of costus root oil. Perfumery and Essential Oil Record. 1960;15:115–120.
  • 19. Somasekar Rao A, Kelkar GR, Bhattacharyya SC. Terpenoids: XXI. The structure of costunolide, a new sesquiterpene lactone from costus root oil. Tetrahedron. 1960;9:275–283.
  • 20. Romo de Vivar A, Jimenez H. Structure of santamarine, a new sesquiterpene lactone. Tetrahedron. 1965;21:1741–1745. https://doi.org/10.1016/S0040-4020(01)98644-2
  • 21. Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry. 2011;72:624–634. https://doi.org/10.1016/j.phytochem.2011.01.037
  • 22. Taniguchi M, Kataoka T, Suzuki H, Uramoto M, Ando M, Arao K, et al. Costunolide and dehydrocostus lactone as inhibitors of killing function of cytotoxic T lymphocytes. Biosci Biotechnol Biochem. 1995;59:2064–2067. https://doi.org/10.1271/bbb.59.2064
  • 23. Yuuya S, Hagiwara H, Suzuki T, Ando M, Yamada A, Suda K, et al. Guaianolides as immunomodulators. Synthesis and biological activities of dehydrocostus lactone, mokkolactone, eremanthin, and their derivatives. J Nat Prod. 1999;62:22–30. https://doi.org/10.1021/np980092u
  • 24. Matsuda H, Kagerura T, Toguchida I, Ueda H, Morikawa T, Yoshikawa M. Inhibitory effects of sesquiterpenes from bay leaf on nitric oxide production in lipopolysaccharide activated macrophages: structure requirement and role of heat shock protein induction. Life Sci. 2000;66:2151–2157. https://doi.org/10.1016/S0024-3205(00)00542-7
  • 25. Yoshikawa M, Shimoda H, Uemura T, Morikawa T, Kawahara Y, Matsuda H. Alcohol absorption inhibitors from bay leaf (Laurus nobilis): structure-requirements of sesquiterpenes for the activity. Bioorg Med Chem. 2000;8:2071–2077. https://doi.org/10.1016/S0968-0896(00)00127-9
  • 26. Sun CM, Syu W Jr, Don MJ, Lu JJ, Lee GH. Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod. 2003;66:1175–1180. https://doi.org/10.1021/np030147e
  • 27. Butturini E, Cavalieri E, Carcereri de Prati A, Darra E, Rigo A, Shoji K, et al. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One. 2011;6:e20174. https://doi.org/10.1371/journal.pone.0020174
  • 28. Endo J, Ogino T, Nagasawa M. Studies on the volatile oil of Asarum caulescens. Yakugaku Zasshi. 1972;92:874–878. https://doi.org/10.1248/yakushi1947.92.7_874
  • 29. Nishikawa Y, Yasuda I, Watanabe Y, Seto T. Studies on the evolution of crude drugs. II. Identification of the ingredients of Atractylodes by thin-layer chromatography, gas chromatography and gas chromatography–mass spectrometry, and the physical and chemical evaluation. Syoyakugaku Zasshi. 1976;30:132–137.
  • 30. Ye Y, Wang H, Chu JH, Chou GX, Chen SB, Mo H, et al. Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells. J Ethnopharmacol. 2011;136:279–282. https://doi.org/10.1016/j.jep.2011.04.020
  • 31. Chen R, Masson PH. Auxin transport and recycling of PIN proteins in plants. In: Šamaja J, Balška F, Menzel D, editors. Plant endocytosis. Berlin: Springer; 2005. p. 139–157. https://doi.org/10.1007/7089_009
  • 32. Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, et al. Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem. 2008;283:31218–31226. https://doi.org/10.1074/jbc.M710122200
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-05e459ad-cff3-4e9d-b408-ab4b185476b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.