Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 6 |
Tytuł artykułu

Physiological and molecular responses of broad bean (Vicia faba L.) to aluminium stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this study, the responses of broad bean cultivars resistant (YD) and sensitive (AD) to aluminum (Al) stress were investigated at physiological and molecular levels. The results showed that Al induced more citrate exudation in YD roots than that in AD roots, suggesting that citrate exudation is involved in broad bean Al resistance. The analyses for oxidative stress levels and antioxidant enzyme activities indicated that YD had a strong ability to cope with the oxidative stress induced by Al. To investigate the molecular responses of broad bean to Al stress further, a forward suppression subtractive hybridization cDNA library was constructed to identify Alresponsive genes in YD roots treated with 50-µM Al for a 24-h period. Of the obtained 162 high-quality ESTs, genes related to antioxidant enzymes including copper-zinc superoxide dismutase (SOD), class III peroxidase (POD) and germin-like protein (GEP) were up-regulated. Higher transcription levels of SOD and POD were observed in YD but not in AD roots, which is in agreement with the enhanced activities of antioxidant enzymes in YD roots under Al stress conditions. Furthermore, the up-regulated expression of vha2, encoding a plasma membrane (PM) H⁺-ATPase, and 14-3-3b in YD roots under Al stress were also detected and confirmed by RT-PCR analysis. Western and immunoprecipitation analyses indicated that Al-enhanced expressions and interactions of the PM H⁺-ATPase and 14-3-3 proteins might be involved in the regulation of citrate secretion in YD roots under Al stress.
Słowa kluczowe
Opis fizyczny
  • Faculty of Environmental Science and Engineering, Chengong Campus, Kunming University of Science and Technology Chenggong, 650500 Kunming, China
  • Biotechnology Research Center, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
  • Biotechnology Research Center, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
  • Biotechnology Research Center, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
  • Biotechnology Research Center, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
  • Biotechnology Research Center, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
  • College of Zoological Science and Technology, Southwest University, 400715 Chongqing, China
  • Biotechnology Research Center, Chenggong Campus, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H⁺-ATPase activity in nearisogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–79
  • Bobik K, Duby G, Nizet Y, Vandermeeren C, Stiernet P, Kanczewska J, Boutry M (2010) Two widely expressed plasma membrane H⁺-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. Plant J 62(2):291–301
  • Boscolo PR, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62(2):181–189
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Chandran D, Sharopova N, Ivashuta S, Gantt JS, Vandenbosch KA, Samac DA (2008) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–166
  • Chen Q, Zhang XD, Wang SS, Wang QF, Wang GQ, Nian HJ, LI KZ, Yu YX, Chen LM (2011) Transcriptional and physiological changes of alfalfa in response to aluminium stress. J Agric Sci 149:737–751
  • Darkó É , Ambrusa H, Stefanovits-Bányaib É, Fodorc J, Bakosa F, Barnabása B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Altolerant lines developed by in vitro microspore selection. Plant Sci 166(3):583–591
  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262
  • Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong X (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res 115:270–278
  • Duressa D, Soliman KM, Taylor RW, Chen DQ (2011) Gene expression profiling in soybean under Aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotype. Am J Mol Biol 1:156–173
  • Emi T, Kinoshita T, Shimazaki K (2001) Specific binding of vf14-3-3a isoform to the plasma membrane H⁺-ATPase in response to blue light and fusicoccin in guard cells of broad bean. Plant Physiol 125:1115–1125
  • Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Alinduced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54(393):2745–2756
  • Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, Horst WJ (2010) Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot 105(7):1119–1128
  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122(3):657–665
  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127(3):918–927
  • Gay CA, Gebicki JM (2003) Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method. Anal Biochem 315(1):29–35
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314
  • Guo TR, Zhang GP, Zhang YH (2007) Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf B Biointerfaces 57(2):182–188
  • Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103(25):9738–9743
  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41:1030–1037
  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196
  • Ligaba A, Yamaguchi M, Shen H, Sasaki T, Yamamoto Y, Matsumoto H (2004) Phosphorus deficiency enhances plasma membrane H⁺-ATPase activity and citrate exudation in greater purple lupin (Lupinus pilosus). Funct Plant Biol 31(11):1075–1083
  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85: 315–317
  • Liu J, Magalhaes JV, SHAFF J, Kochian LV (2009) Aluminumactivated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399
  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41(4):383–390
  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. li. Oxalic acid detoxifies aluminum internally. Plant Physiol 117(3):753–759
  • Ma Y, Guan J, Yang T, Wang S, Wang H, Sun X, Zong X (2011) Development and characterization of 21 EST-derived microsatellite markers in Vicia faba (fava bean). Am J Bot 98:e22–e24
  • Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410
  • Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H⁺-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103: 713–718
  • Niu X, Damsz B, Kononowicz AK, Bressan RA, Hasegawa PM (1996) NaCl-induced alterations in both cell structure and tissuespecific plasma membrane H⁺-ATPase gene expression. Plant Physiol 111:679–686
  • Ohno T, Koyama H, Hara T (2003) Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiol 44(2): 156–162
  • Rangel AF, Rao IM, Braun HP, Horst WJ (2010) Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apice. Physiol Plant 138:176–190
  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116(1):409–418
  • Roberts MR (2003) 14-3-3 Proteins find new partners in plant cell signalling. Trends in Plant Sci 8(5):218–223
  • Rubiales D (2010) Faba beans in sustainable agriculture. Field Crops Res 115:201–202
  • Sasaki T, Yamamoto Y, Matsumoto H (2002) A wheat gene encoding multidrug resistance (MDR)-like protein induced by aluminum stress. Plant Cell Physiol 43(2):177–185
  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37(5): 645–653
  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H⁺-ATPase. Plant Physiol 188:287–296
  • Sombra L, Luconi M, Silva MF, Olsina RA, Fernandez L (2001) Spectrophotometric determination of trace aluminium content in parenteral solutions by combined cloud point preconcentration–flow injection analysis. Analyst 126:1172–1176
  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844
  • Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009) Plasma membrane H⁺-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ 32:465–475
  • Wang QF, Zhao Y, Yi Q, Li KZ, Yu YX, Chen LM (2010) Overexpression of malate dehydrogenase in transgenic tobacco leaves: enhanced malate synthesis and augmented Al-resistance. Acta Physiol Plant 32:1209–1220
  • Watt DA (2003) Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot 54(385):1163–1174
  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349
  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1): 199–208
  • Yan F, Zhu Y, Müller C, Zörb C, Schubert S (2002) Adaptation of H⁺-pumping and plasma membrane H + ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129(1):50–68
  • Yi HL, Yi M, Li HH, Wu LH (2010) Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environ Toxicol 25(2):124–129
  • Zhang H, Zhang S, Meng Q, Zou J, Jiang WS, Liu D (2009) Effects of aluminum on nucleoli in root tip cells, root growth and the antioxidant defense system in Vicia faba L. Acta Biologica Cracoviensia Series Botanica 51(2):99–106
  • Zhou LL, Cao J, Zhang FS, Li L (2009) Rhizosphere acidification of faba bean, soybean and maize. Sci of The Total Environ 407(14):4356–4362
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.