Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 64

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  winter oilseed rape
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Yields of oilseed rape harvested by farmers in Poland are usually much below the attainable potential of currently cultivated varieties, mainly because of the insufficient supply of nutrients during the yield foundation period, which determines the final number of secondary branches. This situation is typical of whole Poland, but may take place even on farms where high yields are harvested, for example in 2007. In 2006, 2007 and 2008, the year effect of multi-micronutrient fertilizers on yield of seeds, elements of yield structure and macronutrient content was studied. Multi-micronutrient fertilizers were applied twice over oilseed rape foliage during its pre-anthesis growth (BBCH45 and 53). In 2007, due to a drought in April, the harvested yields of seeds were below the country’s average. However, in each year of the study, a significant increase in the seed yield owing to the foliar application of multi-micronutrient fertilizers was found. The increase in the yield of seeds, averaged for the three years, reached 0.486 t ha–1 for the NPK+MiMo treatment (full set of micronutrients) and 0.36 t ha–1 for the NPK + Mi treatment (without molybdenum). The increments of the oilseed rape yield resulted from an increased number of developed secondary branches. This yield-forming element was an indirect result of the application of multi-micronutrient fertilizers, which affected the nitrogen economy by oilseed rape plants during the foundation period of their growth. At the same time, the increase in seed yield was significantly modified by the total number of developed pods, which is shaped during the yield-forming period of oilseed rape crop growth. Under conditions of the study, the magnesium content in secondary branches was found to be an element significantly correcting their number, thus increasing the yield of seeds.
This work uses the results of Post-registration Cultivar and Agricultural Experimentation conducted in 1999–2011 in Lower Silesia, on soils of very good and good wheat complex. The rape vegetation season was divided into five periods that approximately corresponded to the phenological phases of the plant, namely: September-November (from sowing to stemming the growing season in the autumn), December-March (stunted vegetation – renewal of vegetation), April (renewal of vegetation – the beginning of flowering), May (flowering), June (end of flowering – technical maturity). In the constructed regression model the following factors were included: the average air temperature and total precipitation in the periods, the content of phosphorus, potassium and pH of soil and fertilization with nitrogen, phosphorus and potassium. Comparing the impact of meteorological conditions in different growing periods of winter rape, it was found that the weakest impact on the yield had temperature and precipitation from September to November. During this period, the optimum for yield are the following conditions: average temperature 10.4°C and precipitation total 145 mm. The winter period (December- March) has the strongest impact on the yield of rape. The yield is conspicuously higher with lower average air temperatures. Optimal for yield is precipitation of 171 mm (highest tested) and a relatively low average air temperature (–0.9°C). In April, the decisive factor is rainfall. Its lower values (12 mm) favour higher yield. The optimum weather in this period is 12 mm precipitation and average temperature of 9.1°C. Rape yield increases with increasing average air temperature in May and is highest when its value is 15°C and rainfall in this month is above average (73 mm). The weather in June has less impact on rape crop than in the three previous periods. The optimal layout is: 27 mm precipitation and temperature 16°C, these values being the smallest tested.
The effect of differentiated pre-sow ploughing depth (30, 20 and 10 cm) and weed control method (mechanical, chemical, combined mechanical and chemical) on the overwintering, weed infestation, yield and quality of seeds of oilseed rape was tested. Shallower ploughing worsened the main traits of the autumn condition of rape plants. Rape plants treated chemically had better-formed rosettes than those treated mechanically. Ploughing made to the depth of 30 and 20 cm did not significantly differentiate the yield of rape plants. However, a significant decrease (9-13%) in the yield occurred when the ploughing depth went down to 10 cm. The highest yield was obtained from the rape controlled chemically against weeds. The yield-protective effect of the combined mechanical and chemical weed control was comparable to that of mechanical method.
Winter oilseed rape is the key oil crop in temperate climate regions of the world. Yield of seeds depends the most on nitrogen management throughout the season. The evaluation of N status in the oil-seed rape canopy was studied in 2008, 2009, and 2010 seasons. The one factorial experiment to verify the formulated hypothesis, consisting of six treatments, was as follows: absolute control (AC), NP, NPK, NPK + MgS - 1/3 rate of total planned rate applied in Spring (NPKMgS1), NPKMgS - 1.0 rate in Autumn (NPKMgMgS2), NPK+MgS - 2/3 in Autumn + 1/3 in Spring (NPKMgS3). Plant samples were taken at three stages: i) full rosette (BBCH 30), ii) the onset of flowering (BBCH 61), iii) maturity (BBCH 89). The total plant sample was partitioning in accordance with the growth stage among main plant organs such as leaves, stems, straw, and seeds. Yield of biomass, nitrogen concentration and content were determined in each part of the plant. The study showed an existence of two strategies of dry matter and nitrogen accumulation by oil-seed rape throughout the season. In 2008, and partly in 2010 revealed the strategy of yield formation relying on relatively slow, but at the same time a permanent increase in nitrogen and biomass accumulation during the season. This strategy resulted in a high seed density in the main branch. The size of this yield component significantly depended on nitrogen content in leaves at the onset of flowering. In 2009 revealed the second strategy of yield formation by oilseed rape. Its attribute was a very high rate of nitrogen accumulation during the vegetative growth, resulting in a huge biomass of leaves at the onset of flowering. This growth pattern, as corroborated by yield of seeds, was not as effective as the first one. The main reason of its lower productivity was the reduced seed density, especially in pods of the secondary branch, resulting from an excessive nitrogen content in leaves at the onset of flowering. Irrespectively on the strategy of nitrogen management by the oilseed rape canopy, the best predictor of the final yield was nitrogen content in seeds. It can be concluded that any growth factor leading to the nitrogen sink decrease, such as reduced plant density and/or disturbed N management throughout the season, can be considered as a factor negatively impacting yield of seeds.
At present, chlorine counts as one of the elements which are essential for growth and development of plants because it plays an important role in main physiological processes as well as in plant protection against diseases. In Poland, the problem of chlorine shortage does not appear, therefore there are no studies on its present concentration and accumulation in field crops. However, the content of chlorine in plants and their tolerance to its excess in soil are varied. Under conditions of its high availability in the environment, its excessive accumulation is possible because chlorine is easily taken up from soil and directly from air. The aim of this study has been to find out the concentration and accumulation of chlorine in winter oilseed rape organs in dependence on N and Cl supply from the flowering up to the full maturity phase. The experiment was conducted in a greenhouse of IUNG-PIB, in Mitscherlich pots, where winter oilseed rape was cultivated. The first experimental factor was nitrogen fertilization (1.4 and 2.8 g pot-1) and the second was chlorine application (0, 0.47, 0.97 and 1.42 g pot-1). Chlorine concentration in plants was dependent on N dose, which caused its decrease, and on Cl dose, which resulted in its increase. The most abundant in chlorine were leaves while flowers and developing siliques contained the least of this element. Chlorine accumulated mainly in rape leaves. The accumulation of chlorine in oilseed rape increased under higher plant supply in N and Cl. The experimental plants showed a moderate supply in Cl, except the object fertilized with the highest dose of chlorine.
The quantity of the crop plant pests have to be under control. A defense against pest organisms with toxic chemicals has been the prevailing pest control strategy for over 50 years. However, plants were found to possess insecticidal properties. Several essential oils act as antifeedants, deterrents and repellents. Essential oils are products of the secondary metabolism in plants. They are mixtures of simple and volatile compounds. One of the example is lavender oil, which repels Ceutorhynchus sp. - the most important pests of Brassica napus var. oleifera plants. The same effect was observed in the case when linalool, linalyl acetate (main components of lavender oil) and lavandulol were applied [Duda, Dubert 2008a, 2008b]. Thymol, the major constituent of thyme oil, is also a deterrent for the lepidopteran pest - Plutella xylostella L. [Akhtar, Isman 2004].
A high yield of oilseed rape can be achieved provided an adequate supply of magnesium and sulfur in critical stages of yield formation. The magnesium status in canopy was studied in the 2008, 2009 and 2010 growing seasons. A one factorial experiment consisting of six treatments, set up to verify the research hypothesis, was as follows: control (C), NP, NPK, NPK+ MgS - 1/3 of total planned dose applied in spring (NPKMgS1), NPK+1.0 MgS dose in autumn (NPKMgMgS2), NPK+MgS - 2/3 in autumn + 1/3 in spring (NPKMgS3). Plant samples were taken at three stages: rosette (BBCH 30), the onset of flowering (BBCH 61) and maturity (BBCH 89). An entire sample was partitioned in accordance with the growth stage into main plant organs: leaves, stems, straw and seeds. The yield of biomass, magnesium concentration and its content was determined in each part of the plant. The magnesium concentration in leaves at the onset of flowering can be used as the first predictor of yield. The predictive strength of the magnesium content in seeds as the final yield predictor corroborated the hypothesis of the importance of magnesium for the seed sink build-up. An analysis of relationships between the magnesium content in plant parts during the growing season and yield of seeds can be used to make an ex-post analysis of factors disturbing the development of yield structural components. The main cause of yield reduction in 2009 as compared to 2008 was the insufficient supply of magnesium to vegetative organs of oilseed plants since the onset of flowering. It was documented that the degree of magnesium supply to a growing silique is critical for the seed yield performance, as noted in 2008. It was also found that any disturbance in the magnesium supply to oilseed rape since the onset of flowering led to reduction in the seed density, which in turn decreased the magnesium seed sink capacity, as the study clearly demonstrated.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.